Chen Xiaogang, Wang Yijun, Zhang Shangen, Gao Xiaorong
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2531-2534. doi: 10.1109/EMBC.2018.8512783.
Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have potential to realize high-speed communication between human brain and external devices. Recently, we proposed an intermodulation frequency-based stimulation approach to increase the number of visual stimuli that can be presented on a computer monitor. Although our recent studies have demonstrated that this approach can encode more visual stimuli by only one flickering frequency, the performance of the intermodulation frequency-based SSVEP BCI remains poor and needs further improvement. This study aims to incorporate filter bank analysis and individual SSVEP calibration data into canonical correlation analysis (CCA) to improve the detection of SSVEPs with intermodulation frequencies. Results on classification accuracy and information transfer rate (ITR) suggest that the employment of individual calibration data can significantly improve the performance of the intermodulation frequency-based SSVEP BCI.
基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)有潜力实现人脑与外部设备之间的高速通信。最近,我们提出了一种基于互调频率的刺激方法,以增加可在计算机显示器上呈现的视觉刺激数量。尽管我们最近的研究表明,这种方法仅通过一个闪烁频率就能编码更多视觉刺激,但基于互调频率的SSVEP BCI的性能仍然较差,需要进一步改进。本研究旨在将滤波器组分析和个体SSVEP校准数据纳入典型相关分析(CCA),以改善对具有互调频率的SSVEP的检测。分类准确率和信息传递率(ITR)的结果表明,使用个体校准数据可以显著提高基于互调频率的SSVEP BCI的性能。