School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China.
Department of Biomedical Engineering, School of medicine, Tsinghua University, Beijing 100084, People's Republic of China.
J Neural Eng. 2021 Jul 2;18(4). doi: 10.1088/1741-2552/ac0bfa.
Steady-state visual evoked potential (SSVEP) is an essential paradigm of electroencephalogram based brain-computer interface (BCI). Previous studies in the BCI research field mostly focused on enhancing classification accuracy and reducing stimuli duration. This study, however, concentrated on increasing the number of available targets in the BCI systems without calibration.. Motivated by the idea of multiple frequency sequential coding, we developed a calibration-free SSVEP-BCI system implementing 160 targets by four continuous sinusoidal stimuli that lasted four seconds in total. Taking advantage of the benchmark dataset of SSVEP-BCI, this study optimized an arrangement of stimuli sequences, maximizing the response distance between different stimuli. We proposed an effective classification algorithm based on filter bank canonical correlation analysis. To evaluate the performance of this system, we conducted offline and online experiments using cue-guided selection tasks. Eight subjects participated in the offline experiments, and 12 subjects participated in the online experiments with real-time feedbacks.. Offline experiments indicated the feasibility of the stimulation selection and detection algorithms. Furthermore, the online system achieved an average accuracy of 87.16 ± 11.46% and an information transfer rate of 78.84 ± 15.59 bits min. Specifically, seven of 12 subjects accomplished online experiments with accuracy higher than 90%. This study proposed an intact solution of applying numerous targets to SSVEP-based BCIs. Results of experiments confirmed the utility and efficiency of the system.. This study firstly provides a calibration-free SSVEP-BCI speller system that enables more than 100 commands. This system could significantly expand the application scenario of SSVEP-based BCI. Meanwhile, the design criterion can hopefully enhance the overall performance of the BCI system. The demo video can be found in the supplementary material available online atstacks.iop.org/JNE/18/046094/mmedia.
稳态视觉诱发电位 (SSVEP) 是基于脑电图的脑机接口 (BCI) 的重要范例。BCI 研究领域的先前研究主要集中在提高分类准确性和减少刺激持续时间上。然而,这项研究专注于在不进行校准的情况下增加 BCI 系统中可用目标的数量。受多频率顺序编码思想的启发,我们开发了一种无需校准的 SSVEP-BCI 系统,该系统通过四个持续四秒的连续正弦刺激实现 160 个目标。利用 SSVEP-BCI 的基准数据集,本研究优化了刺激序列的排列,最大限度地增加了不同刺激之间的响应距离。我们提出了一种基于滤波器组典型相关分析的有效分类算法。为了评估该系统的性能,我们使用基于提示的选择任务进行了离线和在线实验。八位受试者参加了离线实验,十二位受试者参加了具有实时反馈的在线实验。离线实验表明了刺激选择和检测算法的可行性。此外,在线系统的平均准确率为 87.16 ± 11.46%,信息传输率为 78.84 ± 15.59 bit min。具体来说,十二位受试者中有七位的准确率高于 90%。本研究提出了一种完整的解决方案,即将大量目标应用于基于 SSVEP 的 BCI。实验结果证实了该系统的实用性和效率。本研究首次提供了一种无需校准的 SSVEP-BCI 拼写器系统,可实现 100 多个命令。该系统可以显著扩展基于 SSVEP 的 BCI 的应用场景。同时,该设计标准有望提高 BCI 系统的整体性能。演示视频可在网上补充材料中找到,网址为 stacks.iop.org/JNE/18/046094/mmedia。