Suppr超能文献

基于稀疏贝叶斯学习的神经输入估计以及扫视和平滑跟踪眼动检测

Estimation of Neural Inputs and Detection of Saccades and Smooth Pursuit Eye Movements by Sparse Bayesian Learning.

作者信息

Wadehn Federico, Mack David J, Weber Thilo, Loeliger Hans-Andrea

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2619-2622. doi: 10.1109/EMBC.2018.8512758.

Abstract

Eye movements reveal a great wealth of information about the visual system and the brain. Therefore, eye movements can serve as diagnostic markers for various neurological disorders. For an objective analysis, it is crucial to have an automatic and robust procedure to extract relevant eye movement parameters. An essential step towards this goal is to detect and separate different types of eye movements such as fixations, saccades and smooth pursuit. We have developed a model-based approach to perform signal detection and separation on eye movement recordings, using source separation techniques from sparse Bayesian learning. The key idea is to model the oculomotor system with a state space model and to perform signal separation in the neural domain by estimating sparse inputs which trigger saccades. The algorithm was evaluated on synthetic data, neural recordings from rhesus monkeys and on manually annotated human eye movement recordings with different smooth pursuit paradigms. The developed approach shows a high noise-robustness, provides saccade and smooth pursuit parameters, as well as estimates of the position, velocity and acceleration profiles. In addition, by estimating the input to the oculomotor system, we obtain an estimate of the neural inputs to the oculomotor muscles.

摘要

眼球运动揭示了大量有关视觉系统和大脑的信息。因此,眼球运动可作为各种神经系统疾病的诊断标志物。为了进行客观分析,拥有一个自动且可靠的程序来提取相关眼球运动参数至关重要。朝着这个目标迈出的关键一步是检测和区分不同类型的眼球运动,如注视、扫视和平稳跟踪。我们开发了一种基于模型的方法,利用稀疏贝叶斯学习中的源分离技术,对眼球运动记录进行信号检测和分离。关键思想是用状态空间模型对动眼系统进行建模,并通过估计触发扫视的稀疏输入在神经领域进行信号分离。该算法在合成数据、恒河猴的神经记录以及具有不同平稳跟踪范式的人工标注的人类眼球运动记录上进行了评估。所开发的方法显示出高抗噪性,提供了扫视和平稳跟踪参数,以及位置、速度和加速度曲线的估计值。此外,通过估计动眼系统的输入,我们获得了动眼肌肉神经输入的估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验