Suppr超能文献

CEA:用于实时患者监测的临床事件注释移动健康应用程序。

CEA: Clinical Event Annotator mHealth Application for Real-time Patient Monitoring.

作者信息

Nizami Shermeen, Basharat Amna, Shoukat Arslan, Hameed Uzair, Raza Syed Ali, Bekele Amente, Giffen Randy, Green James R

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2921-2924. doi: 10.1109/EMBC.2018.8512898.

Abstract

This research develops a novel dynamic mobile health (mHealth) application (app), called the Clinical Event Annotator (CEA). The CEA comprises of a native Android tablet app and an administrative web app. The native app is used at the patient bedside to manually annotate clinical events in real-time. Event types include patient monitor alarms, routine care, clinical interventions, and patient movements. The app can be dynamically updated with user-defined customized events. The web app generates reports of the annotation sessions. The CEA app is developed to support a clinical study that explores the use of pressure-sensitive mats (PSM) in the neonatal intensive care unit (NICU) to detect the respiratory rate (RR), heart rate (HR), and movement of critically ill neonatal patients. High-fidelity CEA app annotations are synced with a backend database that enables integration and synchronization with independently acquired patient monitoring data, such as RR, HR, and contact pressure data from the PSM. The gold standard CEA annotations serve the purpose of retrospectively training machine learning algorithms for clinical event detection. Preliminary test results from use of the app in the clinical study are presented. Development of the CEA app is a unique and novel contribution that addresses the well-known problem of manually annotating physiologic data streams to support clinical data mining applications.

摘要

本研究开发了一种名为临床事件注释器(CEA)的新型动态移动健康(mHealth)应用程序(app)。CEA由一个原生安卓平板电脑应用程序和一个管理型网络应用程序组成。原生应用程序用于患者床边,实时手动注释临床事件。事件类型包括患者监护仪警报、常规护理、临床干预和患者活动。该应用程序可以使用用户定义的定制事件进行动态更新。网络应用程序生成注释会话报告。CEA应用程序的开发是为了支持一项临床研究,该研究探索在新生儿重症监护病房(NICU)使用压敏垫(PSM)来检测危重新生儿患者的呼吸频率(RR)、心率(HR)和活动情况。高保真CEA应用程序注释与后端数据库同步,该数据库能够与独立获取的患者监测数据(如RR、HR和来自PSM的接触压力数据)进行集成和同步。金标准CEA注释用于回顾性训练机器学习算法以进行临床事件检测。本文展示了该应用程序在临床研究中的初步测试结果。CEA应用程序的开发是一项独特而新颖的贡献,解决了手动注释生理数据流以支持临床数据挖掘应用这一众所周知的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验