Suppr超能文献

为大型数据集开发一种可扩展的注释方法,该方法利用具有可操作性的数据增强警报以提高信息量:混合方法。

Developing a Scalable Annotation Method for Large Datasets That Enhances Alarms With Actionability Data to Increase Informativeness: Mixed Methods Approach.

作者信息

Klopfenstein Sophie Anne Inès, Flint Anne Rike, Heeren Patrick, Prendke Mona, Chaoui Amin, Ocker Thomas, Chromik Jonas, Arnrich Bert, Balzer Felix, Poncette Akira-Sebastian

机构信息

Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.

Core Facility Digital Medicine and Interoperability, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

出版信息

J Med Internet Res. 2025 May 5;27:e65961. doi: 10.2196/65961.

Abstract

BACKGROUND

Alarm fatigue, a multifactorial desensitization of staff to alarms, can harm both patients and health care staff in intensive care units (ICUs), especially due to false and nonactionable alarms. Increasing amounts of routinely collected alarm and ICU patient data are paving the way for training machine learning (ML) models that may help reduce the number of nonactionable alarms, potentially increasing alarm informativeness and reducing alarm fatigue. At present, however, there is no publicly available dataset or process that routinely collects information on alarm actionability (ie, whether an alarm triggers a medical intervention or not), which is a key feature for developing meaningful ML models for alarm management. Furthermore, case-based manual annotation is too slow and resource intensive for large amounts of data.

OBJECTIVE

We propose a scalable method to annotate patient monitoring alarms associated with patient-related variables regarding their actionability. While the method is aimed to be used primarily in our institution, other clinicians, scientists, and industry stakeholders could reuse it to build their own datasets.

METHODS

The interdisciplinary research team followed a mixed methods approach to develop the annotation method, using data-driven, qualitative, and empirical strategies. The iterative process consisted of six steps: (1) defining alarm terms; (2) reaching a consensus on an annotation concept and documentation structure; (3) defining physiological alarm conditions, related medical interventions, and time windows to assess; (4) developing mapping tables; (5) creating the annotation rule set; and (6) evaluating the generated content. All decisions were made based on feasibility criteria, clinical relevance, occurrence frequency, data availability and quantity, structure, and storage mode. The annotation guideline development process was preceded by the analysis of the institution's data and systems, the evaluation of device manuals, and a systematic literature review.

RESULTS

In a multidisciplinary consensus-based approach, we defined preprocessing steps and a rule-based annotation method to classify alarms as either actionable or nonactionable based on data from the patient data management system. We have presented our experience in developing the annotation method and provided the generated resources. The method focuses on respiratory and medication management interventions and includes 8 general rules in a tabular format that are accompanied by graphical examples. Mapping tables enable handling unstructured information and are referenced in the annotation rule set.

CONCLUSIONS

Our annotation method will enable a large number of alarms to be labeled semiautomatically, retrospectively, and quickly, and will provide information on their actionability based on further patient data. This will make it possible to generate annotated datasets for ML models in alarm management and alarm fatigue research. We believe that our annotation method and the resources provided are universal enough and could be used by others to prepare data for future ML projects, even beyond the topic of alarms.

摘要

背景

警报疲劳是工作人员对警报的多因素脱敏现象,在重症监护病房(ICU)中会对患者和医护人员造成伤害,尤其是由于虚假警报和不可操作的警报。常规收集的警报和ICU患者数据量不断增加,为训练机器学习(ML)模型铺平了道路,这些模型可能有助于减少不可操作警报的数量,潜在地提高警报的信息量并减少警报疲劳。然而,目前没有公开可用的数据集或流程来常规收集有关警报可操作性的信息(即警报是否触发医疗干预),而这是开发有意义的警报管理ML模型的关键特征。此外,基于案例的人工注释对于大量数据来说太慢且资源密集。

目的

我们提出一种可扩展的方法,用于注释与患者相关变量相关的患者监测警报的可操作性。虽然该方法主要旨在供我们机构使用,但其他临床医生、科学家和行业利益相关者可以重复使用它来构建自己的数据集。

方法

跨学科研究团队采用混合方法来开发注释方法,使用数据驱动、定性和实证策略。迭代过程包括六个步骤:(1)定义警报术语;(2)就注释概念和文档结构达成共识;(3)定义生理警报条件、相关医疗干预和评估时间窗口;(4)开发映射表;(5)创建注释规则集;(6)评估生成的内容。所有决策均基于可行性标准、临床相关性、发生频率、数据可用性和数量、结构以及存储模式做出。在制定注释指南的过程之前,对机构的数据和系统进行了分析、对设备手册进行了评估,并进行了系统的文献综述。

结果

在基于多学科共识的方法中,我们定义了预处理步骤和基于规则的注释方法,以根据患者数据管理系统中的数据将警报分类为可操作或不可操作。我们介绍了开发注释方法的经验并提供了生成的资源。该方法侧重于呼吸和药物管理干预,并以表格形式包含8条通用规则,并配有图形示例。映射表能够处理非结构化信息,并在注释规则集中被引用。

结论

我们的注释方法将能够对大量警报进行半自动、回顾性和快速标记,并将根据进一步的患者数据提供有关其可操作性的信息。这将有可能为警报管理和警报疲劳研究中的ML模型生成带注释的数据集。我们相信我们的注释方法和提供的资源具有足够的通用性,其他人可以使用它们为未来的ML项目准备数据,甚至超出警报主题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c84/12089878/d540eaa44884/jmir_v27i1e65961_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验