Suppr超能文献

用于稀疏生理时间序列插补的高斯过程方法与线性方法的比较

Comparison of Gaussian Processes Methods to Linear methods for Imputation of Sparse Physiological Time Series.

作者信息

Nickerson Paul, Baharloo Raheleh, Davoudi Anis, Bihorac Azra, Rashidi Parisa

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4106-4109. doi: 10.1109/EMBC.2018.8513303.

Abstract

Physiological timeseries such as vital signs contain important information about a patient and are used in different clinical application; however, they suffer from missing values and sampling irregularity. In recent years, Gaussian Processes have been used as sophisticated nonlinear value imputation methods on time series, however there is a lack of comparison to other simpler methods. This paper compares the ability of five methods that can be used in missing data imputation in physiological time series. These models are linear interpolation as the baseline, cubic spline interpolation, and three non-linear methods: Single Task Gaussian Processes, Multi-Task Gaussian Processes, and Multivariate Imputation Chained Equations. We used seven intraoperative physiological time series from 27,481 patients. Piecewise aggregate approximation was employed as a dimensionality reduction and resampling strategy. Linear interpolation and cubic splining show overall superiority in prediction of the missing values, compared to the other complex models. The performance of the kernel-based methods suggest that they are highly sensitive to the kernel width and require incorporation of domain knowledge for fine-tuning.

摘要

诸如生命体征之类的生理时间序列包含有关患者的重要信息,并被用于不同的临床应用中;然而,它们存在缺失值和采样不规则的问题。近年来,高斯过程已被用作时间序列上复杂的非线性值插补方法,但是与其他更简单的方法相比还比较欠缺。本文比较了五种可用于生理时间序列中缺失数据插补的方法的能力。这些模型以线性插值作为基线、三次样条插值,以及三种非线性方法:单任务高斯过程、多任务高斯过程和链式方程多元插补。我们使用了来自27481名患者的七个术中生理时间序列。采用分段聚合近似作为降维和重采样策略。与其他复杂模型相比,线性插值和三次样条插值在预测缺失值方面总体上具有优势。基于核的方法的性能表明,它们对核宽度高度敏感,需要结合领域知识进行微调。

相似文献

1
Comparison of Gaussian Processes Methods to Linear methods for Imputation of Sparse Physiological Time Series.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4106-4109. doi: 10.1109/EMBC.2018.8513303.
2
Modified recurrent equation-based cubic spline interpolation for missing data recovery in phasor measurement unit (PMU).
F1000Res. 2023 Dec 18;11:246. doi: 10.12688/f1000research.73182.3. eCollection 2022.
3
Survey: interpolation methods in medical image processing.
IEEE Trans Med Imaging. 1999 Nov;18(11):1049-75. doi: 10.1109/42.816070.
4
A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers.
Sensors (Basel). 2015 Dec 10;15(12):31069-82. doi: 10.3390/s151229842.
5
The Impact of Missing Data and Imputation Methods on the Analysis of 24-Hour Activity Patterns.
Clocks Sleep. 2022 Sep 27;4(4):497-507. doi: 10.3390/clockssleep4040039.
7
Performance Evaluation of Missing-Value Imputation Clustering Based on a Multivariate Gaussian Mixture Model.
PLoS One. 2016 Aug 23;11(8):e0161112. doi: 10.1371/journal.pone.0161112. eCollection 2016.
9
Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity.
IEEE Trans Image Process. 2012 May;21(5):2481-99. doi: 10.1109/TIP.2011.2176743. Epub 2011 Dec 14.
10
A Hybrid Algorithm for Missing Data Imputation and Its Application to Electrical Data Loggers.
Sensors (Basel). 2016 Sep 10;16(9):1467. doi: 10.3390/s16091467.

引用本文的文献

2
Electronic medical records imputation by temporal Generative Adversarial Network.
BioData Min. 2024 Jun 26;17(1):19. doi: 10.1186/s13040-024-00372-2.
3
Missing data imputation techniques for wireless continuous vital signs monitoring.
J Clin Monit Comput. 2023 Oct;37(5):1387-1400. doi: 10.1007/s10877-023-00975-w. Epub 2023 Feb 2.
5

本文引用的文献

1
Multitask Gaussian processes for multivariate physiological time-series analysis.
IEEE Trans Biomed Eng. 2015 Jan;62(1):314-22. doi: 10.1109/TBME.2014.2351376.
2
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data.
PLoS One. 2013 Jun 24;8(6):e66341. doi: 10.1371/journal.pone.0066341. Print 2013.
3
Multiple imputation by chained equations: what is it and how does it work?
Int J Methods Psychiatr Res. 2011 Mar;20(1):40-9. doi: 10.1002/mpr.329.
4
Missing data: our view of the state of the art.
Psychol Methods. 2002 Jun;7(2):147-77.
5
Validation of a modified Early Warning Score in medical admissions.
QJM. 2001 Oct;94(10):521-6. doi: 10.1093/qjmed/94.10.521.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验