Suppr超能文献

心肺活动性别调节的随机数学整合模型

A Stochastic and Mathematically Integrative Model of the Gender Modulation of Cardiorespiratory Activity.

作者信息

BuSha Brett F, Stella Martha H

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4536-4539. doi: 10.1109/EMBC.2018.8513204.

Abstract

Breath-to-breath interval (BBI) and heartbeat-toheartbeat interval (RRI) variability intrinsically contain a combination of random and temporally scaled characteristics. The objective of this study was to design and test a stochastic and mathematically integrative model (SIM) of cardiorespiratory function that could replicate any genderbased differences in breathing or heartrate variability during a calm, resting state. BBI and RRI sequences were recorded from 12 healthy subjects. Inter-breath and inter-beat memory were estimated with an autocorrelation function, and discrete probability density functions were created by fitting polynomial curves to the normalized histograms of each sequence. The SIM generated an artificial BBI or RRI sequence by constructing a random series of interval values selected from a discrete PDF, and then integrating the series with parameters from the autocorrelation analysis. Fractal scaling was quantified with detrended fluctuation analysis. A significant gender difference was identified in the autocorrelation coefficients of the BBI. The SIM produced artificial BBI and RRI sequences with significant fractal scaling as compared to randomly-shuffled surrogate data (p < 0.001), and with fractal-scaling characteristics similar to the original human data. The SIMgenerated BBI sequences also exhibited the same significant gender-based differences as identified in the human data (p < 0.01). In conclusion, this research demonstrated a stochastic and integrative model that replicated the gender-based differences in fractal scaling in resting human breathing patterns.

摘要

逐次呼吸间隔(BBI)和逐次心跳间隔(RRI)变异性本质上包含随机和时间尺度特征的组合。本研究的目的是设计并测试一种心肺功能的随机和数学整合模型(SIM),该模型能够复制平静、休息状态下呼吸或心率变异性中基于性别的差异。记录了12名健康受试者的BBI和RRI序列。用自相关函数估计呼吸间和心跳间记忆,并通过将多项式曲线拟合到每个序列的归一化直方图来创建离散概率密度函数。SIM通过构建从离散概率密度函数中选择的随机间隔值序列,然后将该序列与自相关分析的参数进行整合,生成人工BBI或RRI序列。用去趋势波动分析量化分形标度。在BBI的自相关系数中发现了显著的性别差异。与随机打乱的替代数据相比,SIM生成的人工BBI和RRI序列具有显著的分形标度(p < 0.001),并且分形标度特征与原始人类数据相似。SIM生成的BBI序列也表现出与人类数据中相同的基于性别的显著差异(p < 0.01)。总之,本研究展示了一种随机和整合模型,该模型复制了静息人类呼吸模式中基于性别的分形标度差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验