Suppr超能文献

一种呼吸的随机综合模型。

A stochastic and integrative model of breathing.

作者信息

BuSha Brett F, Banis George

机构信息

2000 Pennington Road, Department of Biomedical Engineering, School of Engineering, The College of New Jersey, Ewing, NJ 08628, United States.

2201 J.M. Patterson Building, University of Maryland, College Park, MD 20742, United States.

出版信息

Respir Physiol Neurobiol. 2017 Mar;237:51-56. doi: 10.1016/j.resp.2016.12.012. Epub 2017 Jan 3.

Abstract

Human breathing patterns contain both temporal scaling characteristics, and an innately random component. A stochastic and mathematically integrative model of breathing (SIMB) that simulated the natural random and fractal-like pattern of human breathing was designed using breath-to-breath interval (BBI) data recorded from 14 healthy subjects. Respiratory system memory was estimated with autocorrelation, and a probability density function (PDF) was created by fitting a polynomial curve to each normalized BBI sequence histogram. SIMB sequences were produced by randomly selecting BBI values using a PDF and imparting memory with an autocorrelation-based function. Temporal scaling was quantified with detrended fluctuation analysis. The SIMB BBI sequences were embedded with significant fractal scaling (p<0.001) that was similar to the human data (p>0.05), and increasing SIMB output length did not alter the temporal scaling (p>0.05). This study demonstrated a new computational model that can reproduce the inherent stochastic and time scaling characteristics of human breathing.

摘要

人类呼吸模式既包含时间尺度特征,也包含天生的随机成分。利用从14名健康受试者记录的逐次呼吸间隔(BBI)数据,设计了一种模拟人类呼吸自然随机和类分形模式的呼吸随机数学整合模型(SIMB)。用自相关估计呼吸系统记忆,并通过将多项式曲线拟合到每个归一化BBI序列直方图来创建概率密度函数(PDF)。通过使用PDF随机选择BBI值并通过基于自相关的函数赋予记忆来生成SIMB序列。用去趋势波动分析量化时间尺度。SIMB BBI序列具有与人类数据相似的显著分形尺度(p<0.001)(p>0.05),并且增加SIMB输出长度不会改变时间尺度(p>0.05)。本研究展示了一种能够再现人类呼吸固有随机和时间尺度特征的新计算模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验