Suppr超能文献

用于慢性微电极脑电图记录的3D打印颅骨窗口系统

3D Printed Cranial Window System for Chronic μECoG Recording.

作者信息

Bent Brinnae, Williams Ashley J, Bolick Ryan, Chiang Chia-Han, Trumpis Michael, Viventi Jonathan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4591-4594. doi: 10.1109/EMBC.2018.8513117.

Abstract

Chronic studies of flexible μECoG electrodes and the electrode-brain interface have been limited by the inability to assess tissue response over time. The electrophysiological system presented here combines epidural microelectrocorticographic (μECoG) recording capabilities with the ability to visualize tissue response over time through light microscopy and optical coherence tomography (OCT). With the ability to interchange both the electrode and the electronics, and a flushing port for injection of flushing saline and/or drugs, this 3D printed system has future applications in chronic electrophysiology, optogenetics, and advanced imaging methods.

摘要

对柔性微脑电图(μECoG)电极及电极-脑界面的长期研究一直受到无法长期评估组织反应的限制。本文介绍的电生理系统将硬膜外微脑电图(μECoG)记录功能与通过光学显微镜和光学相干断层扫描(OCT)随时间可视化组织反应的能力相结合。该3D打印系统能够互换电极和电子设备,并设有用于注入冲洗盐水和/或药物的冲洗端口,在慢性电生理学、光遗传学和先进成像方法方面具有未来应用前景。

相似文献

1
3D Printed Cranial Window System for Chronic μECoG Recording.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4591-4594. doi: 10.1109/EMBC.2018.8513117.
2
Printable and transparent micro-electrocorticography (μECoG) for optogenetic applications.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:482-5. doi: 10.1109/EMBC.2014.6943633.
3
Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.
IEEE Trans Biomed Circuits Syst. 2013 Oct;7(5):593-600. doi: 10.1109/TBCAS.2013.2282318. Epub 2013 Oct 17.
4
A low-cost, multiplexed electrophysiology system for chronic μECoG recordings in rodents.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5256-9. doi: 10.1109/EMBC.2014.6944811.
5
A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents.
J Neural Eng. 2016 Apr;13(2):026030-26030. doi: 10.1088/1741-2560/13/2/026030. Epub 2016 Mar 15.
6
Strategies for optical control and simultaneous electrical readout of extended cortical circuits.
J Neurosci Methods. 2015 Dec 30;256:220-31. doi: 10.1016/j.jneumeth.2015.07.028. Epub 2015 Aug 19.
8
In vitro assessment of long-term reliability of low-cost μECoG arrays.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4503-4506. doi: 10.1109/EMBC.2016.7591728.
9
μECoG Recordings Through a Thinned Skull.
Front Neurosci. 2019 Oct 1;13:1017. doi: 10.3389/fnins.2019.01017. eCollection 2019.
10
OptoZIF Drive: a 3D printed implant and assembly tool package for neural recording and optical stimulation in freely moving mice.
J Neural Eng. 2016 Dec;13(6):066013. doi: 10.1088/1741-2560/13/6/066013. Epub 2016 Oct 20.

本文引用的文献

1
In vitro assessment of long-term reliability of low-cost μECoG arrays.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4503-4506. doi: 10.1109/EMBC.2016.7591728.
2
A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents.
J Neural Eng. 2016 Apr;13(2):026030-26030. doi: 10.1088/1741-2560/13/2/026030. Epub 2016 Mar 15.
3
Closed-Loop Optogenetic Brain Interface.
IEEE Trans Biomed Eng. 2015 Oct;62(10):2327-37. doi: 10.1109/TBME.2015.2436817. Epub 2015 May 22.
4
The effect of micro-ECoG substrate footprint on the meningeal tissue response.
J Neural Eng. 2014 Aug;11(4):046011. doi: 10.1088/1741-2560/11/4/046011. Epub 2014 Jun 18.
5
A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices.
J Neurosci Methods. 2013 Aug 15;218(1):121-30. doi: 10.1016/j.jneumeth.2013.06.001. Epub 2013 Jun 12.
6
Future developments in brain-machine interface research.
Clinics (Sao Paulo). 2011;66 Suppl 1(Suppl 1):25-32. doi: 10.1590/s1807-59322011001300004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验