Suppr超能文献

一种基于稳健低成本脑电图运动想象的脑机接口。

A Robust Low-Cost EEG Motor Imagery-Based Brain-Computer Interface.

作者信息

Yohanandan Shivanthan A C, Kiral-Kornek Isabell, Tang Jianbin, Mshford Benjamin S, Asif Umar, Harrer Stefan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5089-5092. doi: 10.1109/EMBC.2018.8513429.

Abstract

Motor imagery (MI) based Brain-Computer Interfaces (BCIs) are a viable option for giving locked-in syndrome patients independence and communicability. BCIs comprising expensive medical-grade EEG systems evaluated in carefully-controlled, artificial environments are impractical for take-home use. Previous studies evaluated low-cost systems; however, performance was suboptimal or inconclusive. Here we evaluated a low-cost EEG system, OpenBCI, in a natural environment and leveraged neurofeedback, deep learning, and wider temporal windows to improve performance. $\mu-$rhythm data collected over the sensorimotor cortex from healthy participants performing relaxation and right-handed MI tasks were used to train a multi-layer perceptron binary classifier using deep learning. We showed that our method outperforms previous OpenBCI MI-based BCIs, thereby extending the BCI capabilities of this low-cost device.

摘要

基于运动想象(MI)的脑机接口(BCI)是一种可行的选择,可让闭锁综合征患者获得独立性和沟通能力。由昂贵的医疗级脑电图系统组成的BCI在精心控制的人工环境中进行评估,不适合在家中使用。先前的研究评估了低成本系统;然而,性能并不理想或尚无定论。在这里,我们在自然环境中评估了一种低成本脑电图系统OpenBCI,并利用神经反馈、深度学习和更宽的时间窗口来提高性能。从健康参与者执行放松和右手运动想象任务时在感觉运动皮层上收集的μ节律数据,被用于使用深度学习训练一个多层感知器二元分类器。我们表明,我们的方法优于以前基于OpenBCI运动想象的脑机接口,从而扩展了这种低成本设备的脑机接口能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验