Suppr超能文献

基于睡眠脑电图的大脑年龄测量的夜间变异性。

Night-to-night variability of sleep electroencephalography-based brain age measurements.

机构信息

Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.

Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.

出版信息

Clin Neurophysiol. 2021 Jan;132(1):1-12. doi: 10.1016/j.clinph.2020.09.029. Epub 2020 Oct 29.

Abstract

OBJECTIVE

Brain Age Index (BAI), calculated from sleep electroencephalography (EEG), has been proposed as a biomarker of brain health. This study quantifies night-to-night variability of BAI and establishes probability thresholds for inferring underlying brain pathology based on a patient's BAI.

METHODS

86 patients with multiple nights of consecutive EEG recordings were selected from Epilepsy Monitoring Unit patients whose EEGs reported as within normal limits. While EEGs with epileptiform activity were excluded, the majority of patients included in the study had a diagnosis of chronic epilepsy. BAI was calculated for each 12-hour segment of patient data using a previously established algorithm, and the night-to-night variability in BAI was measured.

RESULTS

The within-patient night-to-night standard deviation in BAI was 7.5 years. Estimates of BAI derived by averaging over 2, 3, and 4 nights had standard deviations of 4.7, 3.7, and 3.0 years, respectively.

CONCLUSIONS

Averaging BAI over n nights reduces night-to-night variability of BAI by a factor of n, rendering BAI a more suitable biomarker of brain health at the individual level. A brain age risk lookup table of results provides thresholds above which a patient has a high probability of excess BAI.

SIGNIFICANCE

With increasing ease of EEG acquisition, including wearable technology, BAI has the potential to track brain health and detect deviations from normal physiologic function. The measure of night-to-night variability and how this is reduced by averaging across multiple nights provides a basis for using BAI in patients' homes to identify patients who should undergo further investigation or monitoring.

摘要

目的

从睡眠脑电图(EEG)中计算出的大脑年龄指数(BAI)已被提出作为大脑健康的生物标志物。本研究量化了 BAI 的夜间变异性,并基于患者的 BAI 确定了推断潜在脑病理的概率阈值。

方法

从脑电图监测单元的患者中选择了多个连续 EEG 记录的 86 名患者,这些患者的脑电图报告在正常范围内。虽然排除了具有癫痫样活动的 EEG,但研究中大多数患者的诊断为慢性癫痫。使用先前建立的算法为患者数据的每个 12 小时段计算 BAI,并测量 BAI 的夜间变异性。

结果

BAI 的患者内夜间标准差为 7.5 年。通过平均 2、3 和 4 个夜晚得出的 BAI 估计值的标准差分别为 4.7、3.7 和 3.0 年。

结论

通过 n 个夜晚平均 BAI 可以将 BAI 的夜间变异性降低 n 倍,从而使 BAI 成为个体水平大脑健康更合适的生物标志物。脑龄风险查询表结果提供了超过该阈值的患者具有高 BAI 的概率较高的阈值。

意义

随着 EEG 采集的日益简便,包括可穿戴技术,BAI 有可能追踪大脑健康并检测到与正常生理功能的偏差。夜间变异性的测量及其通过在多个夜晚上进行平均而降低的方式为在患者家中使用 BAI 提供了基础,以识别需要进一步调查或监测的患者。

相似文献

1
Night-to-night variability of sleep electroencephalography-based brain age measurements.
Clin Neurophysiol. 2021 Jan;132(1):1-12. doi: 10.1016/j.clinph.2020.09.029. Epub 2020 Oct 29.
2
Long-term night-shift work is associated with accelerates brain aging and worsens N3 sleep in female nurses.
Sleep Med. 2024 Sep;121:69-76. doi: 10.1016/j.sleep.2024.06.013. Epub 2024 Jun 14.
3
Excess brain age in the sleep electroencephalogram predicts reduced life expectancy.
Neurobiol Aging. 2020 Apr;88:150-155. doi: 10.1016/j.neurobiolaging.2019.12.015. Epub 2019 Dec 23.
4
Do sleep-deprived EEG recordings reflect spike index as found in full-night EEG recordings?
Epilepsy Behav. 2010 Nov;19(3):348-51. doi: 10.1016/j.yebeh.2010.07.021. Epub 2010 Oct 8.
5
The maturational trajectories of NREM and REM sleep durations differ across adolescence on both school-night and extended sleep.
Am J Physiol Regul Integr Comp Physiol. 2012 Mar 1;302(5):R533-40. doi: 10.1152/ajpregu.00532.2011. Epub 2011 Nov 23.
6
Automatic sleep stage classification based on subcutaneous EEG in patients with epilepsy.
Biomed Eng Online. 2019 Oct 30;18(1):106. doi: 10.1186/s12938-019-0725-3.
7
EEG sleep spectra in older adults across all circadian phases during NREM sleep.
Sleep. 2010 Mar;33(3):389-401. doi: 10.1093/sleep/33.3.389.
8
Association of Sleep Electroencephalography-Based Brain Age Index With Dementia.
JAMA Netw Open. 2020 Sep 1;3(9):e2017357. doi: 10.1001/jamanetworkopen.2020.17357.
9
Prospective longitudinal overnight video-EEG evaluation in Phelan-McDermid Syndrome.
Epilepsy Behav. 2018 Mar;80:312-320. doi: 10.1016/j.yebeh.2017.11.034. Epub 2018 Feb 3.
10
Sleep EEG Detects Epileptiform Activity in Alzheimer's Disease with High Sensitivity.
J Alzheimers Dis. 2017;56(3):1175-1183. doi: 10.3233/JAD-160994.

引用本文的文献

1
Do try this at home: Age prediction from sleep and meditation with large-scale low-cost mobile EEG.
Imaging Neurosci (Camb). 2024 Jun 21;2. doi: 10.1162/imag_a_00189. eCollection 2024.
2
Sleep-Based Brain Age Is Reduced in Advanced Inner Engineering Meditators.
Mindfulness (N Y). 2025;16(6):1675-1692. doi: 10.1007/s12671-025-02583-y. Epub 2025 May 16.
3
Artificial Intelligence Can Drive Sleep Medicine.
Sleep Med Clin. 2025 Mar;20(1):81-91. doi: 10.1016/j.jsmc.2024.10.001. Epub 2024 Dec 9.
4
Epilepsy is associated with the accelerated aging of brain activity in sleep.
Front Physiol. 2024 Nov 28;15:1458592. doi: 10.3389/fphys.2024.1458592. eCollection 2024.
6
Assessing Risk of Health Outcomes From Brain Activity in Sleep: A Retrospective Cohort Study.
Neurol Clin Pract. 2024 Feb;14(1):e200225. doi: 10.1212/CPJ.0000000000200225. Epub 2023 Dec 8.
7
Decoding information about cognitive health from the brainwaves of sleep.
Sci Rep. 2023 Jul 15;13(1):11448. doi: 10.1038/s41598-023-37128-7.
8
How Machine Learning is Powering Neuroimaging to Improve Brain Health.
Neuroinformatics. 2022 Oct;20(4):943-964. doi: 10.1007/s12021-022-09572-9. Epub 2022 Mar 28.

本文引用的文献

1
Commentary: Correction procedures in brain-age prediction.
Neuroimage Clin. 2020;26:102229. doi: 10.1016/j.nicl.2020.102229. Epub 2020 Feb 24.
2
Excess brain age in the sleep electroencephalogram predicts reduced life expectancy.
Neurobiol Aging. 2020 Apr;88:150-155. doi: 10.1016/j.neurobiolaging.2019.12.015. Epub 2019 Dec 23.
3
Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme.
Neuroimage Clin. 2019;24:102063. doi: 10.1016/j.nicl.2019.102063. Epub 2019 Nov 4.
4
Neuroimaging-based brain-age prediction in diverse forms of epilepsy: a signature of psychosis and beyond.
Mol Psychiatry. 2021 Mar;26(3):825-834. doi: 10.1038/s41380-019-0446-9. Epub 2019 Jun 3.
5
The heritability of the human K-complex: a twin study.
Sleep. 2019 Jun 11;42(6). doi: 10.1093/sleep/zsz053.
6
Brain age from the electroencephalogram of sleep.
Neurobiol Aging. 2019 Feb;74:112-120. doi: 10.1016/j.neurobiolaging.2018.10.016. Epub 2018 Oct 19.
7
A Robust Low-Cost EEG Motor Imagery-Based Brain-Computer Interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5089-5092. doi: 10.1109/EMBC.2018.8513429.
8
Predicting Age From Brain EEG Signals-A Machine Learning Approach.
Front Aging Neurosci. 2018 Jul 2;10:184. doi: 10.3389/fnagi.2018.00184. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验