Suppr超能文献

研究视觉干扰物对运动想象脑-机接口性能的影响。

Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.

机构信息

Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.

Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.

出版信息

Clin Neurophysiol. 2018 Jun;129(6):1268-1275. doi: 10.1016/j.clinph.2018.03.015. Epub 2018 Apr 3.

Abstract

OBJECTIVES

Brain-computer interfaces (BCIs) allow users to operate a device or application by means of cognitive activity. This technology will ultimately be used in real-world environments which include the presence of distractors. The purpose of the study was to determine the effect of visual distractors on BCI performance.

METHODS

Sixteen able-bodied participants underwent neurofeedback training to achieve motor imagery-guided BCI control in an online paradigm using electroencephalography (EEG) to measure neural signals. Participants then completed two sessions of the motor imagery EEG-BCI protocol in the presence of infrequent, small visual distractors. BCI performance was determined based on classification accuracy.

RESULTS

The presence of distractors was found to affect motor imagery-specific patterns in mu and beta power. However, the distractors did not significantly affect the BCI classification accuracy; across participants, the mean classification accuracy was 81.5 ± 14% for non-distractor trials, and 78.3 ± 17% for distractor trials.

CONCLUSION

This minimal consequence suggests that the BCI was robust to distractor effects, despite motor imagery-related brain activity being attenuated amid distractors.

SIGNIFICANCE

A BCI system that mitigates distraction-related effects may improve the ease of its use and ultimately facilitate the effective translation of the technology from the lab to the home.

摘要

目的

脑机接口(BCI)允许用户通过认知活动来操作设备或应用程序。这项技术最终将应用于现实环境中,包括存在干扰因素。本研究的目的是确定视觉干扰对 BCI 性能的影响。

方法

16 名健康参与者接受神经反馈训练,以实现在线范式中使用脑电图(EEG)测量神经信号的运动想象引导 BCI 控制。然后,参与者在低频、小视觉干扰的情况下完成两次运动想象 EEG-BCI 协议。BCI 性能基于分类准确性来确定。

结果

发现干扰物会影响运动想象特定的 mu 和 beta 功率模式。然而,干扰物并没有显著影响 BCI 的分类准确性;在参与者中,非干扰物试验的平均分类准确性为 81.5±14%,干扰物试验的平均分类准确性为 78.3±17%。

结论

尽管在干扰物中运动想象相关的大脑活动减弱,但 BCI 对干扰的影响很小,这表明 BCI 具有很强的鲁棒性。

意义

减轻与干扰相关的影响的 BCI 系统可能会提高其易用性,并最终促进该技术从实验室向家庭的有效转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验