Suppr超能文献

两名具有骨整合通信接口的全中耳植入(TMR)受试者中植入电极的肌电信号与模式识别

Myoelectric signals and pattern recognition from implanted electrodes in two TMR subjects with an osseointegrated communication interface.

作者信息

Mastinu Enzo, Branemark Rickard, Aszmann Oskar, Ortiz-Catalan Max

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5174-5177. doi: 10.1109/EMBC.2018.8513466.

Abstract

Permanent implantation of electrodes for prosthetic control is now possible using an osseointegrated implant as a long-term stable communication interface (e-OPRA). The number of myoelectric sites to host such electrodes can be increased by Targeted Muscle Reinnervation (TMR). Traditionally, patients need to wait several months before the TMR signals are strong enough to be recorded by electrodes placed over the skin. In this study, we report the evolution of the TMR myoelectric signals recorded from two subjects via implanted electrodes using e-OPRA, and monitored for up to 48 weeks after surgery. The signals were analyzed with regard to amplitude (signal-to-noise ratio), independence (cross-correlation) and myoelectric pattern recognition (classification accuracy). TMR signals appeared at the first follow-up, one month post-surgery, and developed around 20 dB by the last. Cross-correlation between signals decreased over time and converged to a few percentage points. Classification accuracies were over 97% by the last follow up. These preliminary results suggest that implanted electrodes via the e-OPRA interface allow for an earlier and more effective use of motor signals from TMR sites compared to conventional skin surface electrodes.

摘要

如今,使用骨整合植入物作为长期稳定的通信接口(e-OPRA)来永久植入用于假肢控制的电极已成为可能。通过靶向肌肉再支配(TMR)可以增加容纳此类电极的肌电部位数量。传统上,患者需要等待数月,直到TMR信号足够强,才能被置于皮肤表面的电极记录下来。在本研究中,我们报告了通过使用e-OPRA的植入电极从两名受试者记录到的TMR肌电信号的变化情况,并在术后长达48周的时间内进行了监测。对信号进行了幅度(信噪比)、独立性(互相关)和肌电模式识别(分类准确率)方面的分析。TMR信号在术后第一个月的首次随访时出现,到最后一次随访时增强了约20 dB。信号之间的互相关随着时间的推移而降低,并收敛到几个百分点。到最后一次随访时,分类准确率超过了97%。这些初步结果表明,与传统的皮肤表面电极相比,通过e-OPRA接口植入的电极能够更早、更有效地利用来自TMR部位的运动信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验