Suppr超能文献

上肢 TMR 假肢的控制策略和性能评估:综述。

Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review.

机构信息

Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.

INAIL Prosthetic Center, 40054 Vigorso di Budrio, Italy.

出版信息

Sensors (Basel). 2021 Mar 10;21(6):1953. doi: 10.3390/s21061953.

Abstract

The evolution of technological and surgical techniques has made it possible to obtain an even more intuitive control of multiple joints using advanced prosthetic systems. Targeted Muscle Reinnervation (TMR) is considered to be an innovative and relevant surgical technique for improving the prosthetic control for people with different amputation levels of the limb. Indeed, TMR surgery makes it possible to obtain reinnervated areas that act as biological amplifiers of the motor control. On the technological side, a great deal of research has been conducted in order to evaluate various types of myoelectric prosthetic control strategies, whether direct control or pattern recognition-based control. In the literature, different control performance metrics, which have been evaluated on TMR subjects, have been introduced, but no accepted reference standard defines the better strategy for evaluating the prosthetic control. Indeed, the presence of several evaluation tests that are based on different metrics makes it difficult the definition of standard guidelines for comprehending the potentiality of the proposed control systems. Additionally, there is a lack of evidence about the comparison of different evaluation approaches or the presence of guidelines on the most suitable test to proceed for a TMR patients case study. Thus, this review aims at identifying these limitations by examining the several studies in the literature on TMR subjects, with different amputation levels, and proposing a standard method for evaluating the control performance metrics.

摘要

技术和手术技术的发展使得使用先进的假肢系统对多个关节进行更直观的控制成为可能。靶向肌肉神经再支配(TMR)被认为是一种创新且相关的手术技术,可改善不同截肢水平肢体的假肢控制。事实上,TMR 手术可以获得作为运动控制的生物放大器的神经再支配区域。在技术方面,已经进行了大量研究,以评估各种类型的肌电假肢控制策略,无论是直接控制还是基于模式识别的控制。在文献中,已经介绍了针对 TMR 受试者评估的不同控制性能指标,但没有公认的参考标准来定义评估假肢控制的更好策略。事实上,存在基于不同指标的多种评估测试,这使得理解拟议控制系统的潜力的标准指南的定义变得困难。此外,关于不同评估方法的比较或关于 TMR 患者病例研究最合适测试的指南的证据不足。因此,本综述旨在通过检查文献中针对不同截肢水平的 TMR 受试者的多项研究来确定这些限制,并提出一种评估控制性能指标的标准方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0321/8000641/22014febd213/sensors-21-01953-g001.jpg

相似文献

1
Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review.
Sensors (Basel). 2021 Mar 10;21(6):1953. doi: 10.3390/s21061953.
3
Myoelectric prosthesis hand grasp control following targeted muscle reinnervation in individuals with transradial amputation.
PLoS One. 2023 Jan 26;18(1):e0280210. doi: 10.1371/journal.pone.0280210. eCollection 2023.
4
Targeted muscle reinnervation in upper extremity amputations.
Eur J Orthop Surg Traumatol. 2024 Oct;34(7):3717-3725. doi: 10.1007/s00590-023-03736-2. Epub 2023 Oct 9.
6
[Prosthetic Fitting Concepts after Major Amputation in the Upper Limb - an Overview of Current Possibilities].
Handchir Mikrochir Plast Chir. 2024 Feb;56(1):84-92. doi: 10.1055/a-2260-9842. Epub 2024 Feb 28.
7
Targeted muscle reinnervation and advanced prosthetic arms.
Semin Plast Surg. 2015 Feb;29(1):62-72. doi: 10.1055/s-0035-1544166.
9
Targeted muscle reinnervation and prosthetic rehabilitation after limb loss.
J Surg Oncol. 2018 Oct;118(5):807-814. doi: 10.1002/jso.25256. Epub 2018 Sep 27.

引用本文的文献

1
Optimal Sites for Upper Extremity Amputation: Comparison Between Surgeons and Prosthetists.
Bioengineering (Basel). 2025 Jul 15;12(7):765. doi: 10.3390/bioengineering12070765.
2
Agonist-antagonist myoneural interface surgery on the proprioceptive reconstruction of rat hind limb.
Heliyon. 2024 Sep 18;10(18):e38041. doi: 10.1016/j.heliyon.2024.e38041. eCollection 2024 Sep 30.
3
A compact solution for vibrotactile proprioceptive feedback of wrist rotation and hand aperture.
J Neuroeng Rehabil. 2024 Aug 13;21(1):142. doi: 10.1186/s12984-024-01420-y.
4
Exploring the EMG transient: the muscular activation sequences used as novel time-domain features for hand gestures classification.
Front Neurorobot. 2023 Nov 10;17:1264802. doi: 10.3389/fnbot.2023.1264802. eCollection 2023.
5
A Review on Polymers for Biomedical Applications on Hard and Soft Tissues and Prosthetic Limbs.
Polymers (Basel). 2023 Oct 9;15(19):4034. doi: 10.3390/polym15194034.
7
Hierarchical strategy for sEMG classification of the hand/wrist gestures and forces of transradial amputees.
Front Neurorobot. 2023 Mar 9;17:1092006. doi: 10.3389/fnbot.2023.1092006. eCollection 2023.
8
Ascertaining the optimal myoelectric signal recording duration for pattern recognition based prostheses control.
Front Neurosci. 2023 Feb 22;17:1018037. doi: 10.3389/fnins.2023.1018037. eCollection 2023.
9
Compound motion decoding based on sEMG consisting of gestures, wrist angles, and strength.
Front Neurorobot. 2022 Nov 10;16:979949. doi: 10.3389/fnbot.2022.979949. eCollection 2022.
10
On the Applications of EMG Sensors and Signals.
Sensors (Basel). 2022 Oct 19;22(20):7966. doi: 10.3390/s22207966.

本文引用的文献

1
Comfort and function remain key factors in upper limb prosthetic abandonment: findings of a scoping review.
Disabil Rehabil Assist Technol. 2021 Nov;16(8):821-830. doi: 10.1080/17483107.2020.1738567. Epub 2020 Mar 19.
4
Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces.
Front Neurorobot. 2019 Jun 19;13:42. doi: 10.3389/fnbot.2019.00042. eCollection 2019.
5
New Innovations in Targeted Muscle Reinnervation: A Critical Analysis Review.
JBJS Rev. 2019 Jun;7(6):e3. doi: 10.2106/JBJS.RVW.18.00138.
6
Myoelectric signals and pattern recognition from implanted electrodes in two TMR subjects with an osseointegrated communication interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5174-5177. doi: 10.1109/EMBC.2018.8513466.
7
Control within a virtual environment is correlated to functional outcomes when using a physical prosthesis.
J Neuroeng Rehabil. 2018 Sep 5;15(Suppl 1):60. doi: 10.1186/s12984-018-0402-y.
8
Decoding the grasping intention from electromyography during reaching motions.
J Neuroeng Rehabil. 2018 Jun 26;15(1):57. doi: 10.1186/s12984-018-0396-5.
10
Epidemiology of traumatic upper limb amputations.
Orthop Traumatol Surg Res. 2018 Apr;104(2):273-276. doi: 10.1016/j.otsr.2017.12.014. Epub 2018 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验