Suppr超能文献

利用扫描显微镜对金属薄膜和金属-电介质波导下方的光场进行成像。

Imaging optical fields below metal films and metal-dielectric waveguides by a scanning microscope.

作者信息

Zhu Liangfu, Wang Yong, Zhang Douguo, Wang Ruxue, Qiu Dong, Wang Pei, Ming Hai, Badugu Ramachandram, Rosenfeld Mary, Lakowicz Joseph R

机构信息

Department of Optics and Optical Engineering, Institute of Photonics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, Maryland 21201, USA.

出版信息

J Appl Phys. 2017 Sep 21;122(11):113101. doi: 10.1063/1.5002071. Epub 2017 Sep 15.

Abstract

Laser scanning confocal fluorescence microscopy (LSCM) is now an important method for tissue and cell imaging when the samples are located on the surfaces of glass slides. In the past decade, there has been extensive development of nano-optical structures that display unique effects on incident and transmitted light, which will be used with novel configurations for medical and consumer products. For these applications, it is necessary to characterize the light distribution within short distances from the structures for efficient detection and elimination of bulky optical components. These devices will minimize or possibly eliminate the need for free-space light propagation outside of the device itself. We describe the use of the scanning function of a LSCM to obtain 3D images of the light intensities below the surface of nano-optical structures. More specifically, we image the spatial distributions inside the substrate of fluorescence emission coupled to waveguide modes after it leaks through thin metal films or dielectric-coated metal films. The observed spatial distribution were in general agreement with far-field calculations, but the scanning images also revealed light intensities at angles not observed with classical back focal plane imaging. Knowledge of the subsurface optical intensities will be crucial in the combination of nano-optical structures with rapidly evolving imaging detectors.

摘要

当样本位于载玻片表面时,激光扫描共聚焦荧光显微镜(LSCM)如今是用于组织和细胞成像的一种重要方法。在过去十年中,纳米光学结构得到了广泛发展,这些结构对入射光和透射光呈现出独特的效应,并将与新颖的配置一起用于医疗和消费产品。对于这些应用,有必要对结构附近短距离内的光分布进行表征,以便高效检测并消除庞大的光学组件。这些器件将把设备本身之外的自由空间光传播需求减到最小甚至可能消除。我们描述了利用LSCM的扫描功能来获取纳米光学结构表面以下光强的三维图像。更具体地说,我们对荧光发射在透过薄金属膜或介质涂层金属膜泄漏后耦合到波导模式时在基底内部的空间分布进行成像。观察到的空间分布总体上与远场计算结果一致,但扫描图像还揭示了在经典背焦平面成像中未观察到的角度处的光强。了解亚表面光学强度对于纳米光学结构与快速发展的成像探测器的结合至关重要。

相似文献

1
Imaging optical fields below metal films and metal-dielectric waveguides by a scanning microscope.
J Appl Phys. 2017 Sep 21;122(11):113101. doi: 10.1063/1.5002071. Epub 2017 Sep 15.
2
Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection.
Anal Biochem. 2017 Aug 15;531:20-36. doi: 10.1016/j.ab.2017.05.020. Epub 2017 May 17.
3
Fluorescence Spectroscopy with Metal-Dielectric Waveguides.
J Phys Chem C Nanomater Interfaces. 2015 Jul 16;119(28):16245-16255. doi: 10.1021/acs.jpcc.5b04204. Epub 2015 Jul 1.
4
Metal-Dielectric Waveguides for High Efficiency Fluorescence Imaging.
J Phys Chem C Nanomater Interfaces. 2015 Oct 22;119(42):24081-24085. doi: 10.1021/acs.jpcc.5b08582. Epub 2015 Oct 1.
5
Metal-Dielectric Waveguides for High Efficiency Coupled Emission.
ACS Photonics. 2015 Jun 26;2(7):810-815. doi: 10.1021/acsphotonics.5b00219.
7
Coupling efficiency of probes in emission-mode scanning near-field optical microscopy.
J Microsc. 2008 Feb;229(Pt 2):371-6. doi: 10.1111/j.1365-2818.2008.01914.x.
8
Noble metal nanowires: from plasmon waveguides to passive and active devices.
Acc Chem Res. 2012 Nov 20;45(11):1887-95. doi: 10.1021/ar300133j. Epub 2012 Oct 26.
9
Metasurface-based total internal reflection microscopy.
Biomed Opt Express. 2020 Mar 13;11(4):1967-1976. doi: 10.1364/BOE.385276. eCollection 2020 Apr 1.
10
Light field propagation by metal micro- and nanostructures.
J Microsc. 2001 Apr;202(Pt 1):122-8. doi: 10.1046/j.1365-2818.2001.00819.x.

本文引用的文献

1
Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection.
Anal Biochem. 2017 Aug 15;531:20-36. doi: 10.1016/j.ab.2017.05.020. Epub 2017 May 17.
2
Waveguide-modulated surface plasmon-coupled emission of Nile blue in poly(vinyl alcohol) thin films.
Thin Solid Films. 2006 Jul;510(1-2):15-20. doi: 10.1016/j.tsf.2005.07.312. Epub 2006 Feb 28.
3
Effects of Sample Thickness on the Optical Properties of Surface Plasmon-Coupled Emission.
J Phys Chem B. 2004 Aug 12;108(32):12073-12083. doi: 10.1021/jp0312619. Epub 2004 Jul 16.
5
Metal-Dielectric Waveguides for High Efficiency Fluorescence Imaging.
J Phys Chem C Nanomater Interfaces. 2015 Oct 22;119(42):24081-24085. doi: 10.1021/acs.jpcc.5b08582. Epub 2015 Oct 1.
6
Metal-Dielectric Waveguides for High Efficiency Coupled Emission.
ACS Photonics. 2015 Jun 26;2(7):810-815. doi: 10.1021/acsphotonics.5b00219.
7
Selectable Surface and Bulk Fluorescence Imaging with Plasmon-Coupled Waveguides.
J Phys Chem C Nanomater Interfaces. 2015 Sep 24;119(38):22131-22136. doi: 10.1021/acs.jpcc.5b06912. Epub 2015 Sep 4.
8
Fluorescence Spectroscopy with Metal-Dielectric Waveguides.
J Phys Chem C Nanomater Interfaces. 2015 Jul 16;119(28):16245-16255. doi: 10.1021/acs.jpcc.5b04204. Epub 2015 Jul 1.
9
Directing fluorescence with plasmonic and photonic structures.
Acc Chem Res. 2015 Aug 18;48(8):2171-80. doi: 10.1021/acs.accounts.5b00100. Epub 2015 Jul 13.
10
Surface plasmon coupled emission in micrometer-scale cells: a leap from interface to bulk targets.
J Phys Chem B. 2015 Feb 19;119(7):2921-7. doi: 10.1021/jp512031r. Epub 2015 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验