Suppr超能文献

生化信号基序中信息传递的内在限制。

Intrinsic limits of information transmission in biochemical signalling motifs.

作者信息

Suderman Ryan, Deeds Eric J

机构信息

Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA.

Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA.

出版信息

Interface Focus. 2018 Dec 6;8(6):20180039. doi: 10.1098/rsfs.2018.0039. Epub 2018 Oct 19.

Abstract

All living things have evolved to sense changes in their environment in order to respond in adaptive ways. At the cellular level, these sensing systems generally involve receptor molecules at the cell surface, which detect changes outside the cell and relay those changes to the appropriate response elements downstream. With the advent of experimental technologies that can track signalling at the single-cell level, it has become clear that many signalling systems exhibit significant levels of 'noise,' manifesting as differential responses of otherwise identical cells to the same environment. This noise has a large impact on the capacity of cell signalling networks to transmit information from the environment. Application of information theory to experimental data has found that all systems studied to date encode less than 2.5 bits of information, with the majority transmitting significantly less than 1 bit. Given the growing interest in applying information theory to biological data, it is crucial to understand whether the low values observed to date represent some sort of intrinsic limit on information flow given the inherently stochastic nature of biochemical signalling events. In this work, we used a series of computational models to explore how much information a variety of common 'signalling motifs' can encode. We found that the majority of these motifs, which serve as the basic building blocks of cell signalling networks, can encode far more information (4-6 bits) than has ever been observed experimentally. In addition to providing a consistent framework for estimating information-theoretic quantities from experimental data, our findings suggest that the low levels of information flow observed so far in living system are not necessarily due to intrinsic limitations. Further experimental work will be needed to understand whether certain cell signalling systems actually can approach the intrinsic limits described here, and to understand the sources and purpose of the variation that reduces information flow in living cells.

摘要

所有生物都经过进化以感知环境变化,从而以适应性方式做出反应。在细胞水平上,这些传感系统通常涉及细胞表面的受体分子,它们检测细胞外的变化,并将这些变化传递给下游适当的反应元件。随着能够在单细胞水平追踪信号传导的实验技术的出现,很明显许多信号系统表现出显著水平的“噪声”,表现为原本相同的细胞对相同环境的不同反应。这种噪声对细胞信号网络从环境中传输信息的能力有很大影响。将信息论应用于实验数据发现,迄今为止研究的所有系统编码的信息都少于2.5比特,大多数系统传输的信息远少于1比特。鉴于将信息论应用于生物数据的兴趣日益浓厚,了解迄今为止观察到的低数值是否代表生化信号事件固有随机性所导致的信息流的某种内在限制至关重要。在这项工作中,我们使用了一系列计算模型来探索各种常见的“信号基序”能够编码多少信息。我们发现,这些作为细胞信号网络基本构建块的基序中的大多数能够编码比以往实验观察到的多得多的信息(4 - 6比特)。除了为从实验数据估计信息论量提供一个一致的框架外,我们的发现表明,迄今为止在生命系统中观察到的低信息流水平不一定是由于内在限制。需要进一步的实验工作来了解某些细胞信号系统是否真的能够接近这里描述的内在极限,以及了解减少活细胞中信息流的变化的来源和目的。

相似文献

1
Intrinsic limits of information transmission in biochemical signalling motifs.生化信号基序中信息传递的内在限制。
Interface Focus. 2018 Dec 6;8(6):20180039. doi: 10.1098/rsfs.2018.0039. Epub 2018 Oct 19.
3
Fundamental trade-offs between information flow in single cells and cellular populations.单细胞和细胞群体中信息流的基本权衡。
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5755-5760. doi: 10.1073/pnas.1615660114. Epub 2017 May 12.
5
On signalling and estimation limits for molecular birth-processes.关于分子出生过程的信号和估计限制。
J Theor Biol. 2019 Nov 7;480:262-273. doi: 10.1016/j.jtbi.2019.07.007. Epub 2019 Jul 9.

本文引用的文献

3
NF-κB Dynamics Discriminate between TNF Doses in Single Cells.NF-κB 动力学可区分单个细胞中的 TNF 剂量。
Cell Syst. 2017 Dec 27;5(6):638-645.e5. doi: 10.1016/j.cels.2017.10.011. Epub 2017 Nov 8.
6
Fundamental trade-offs between information flow in single cells and cellular populations.单细胞和细胞群体中信息流的基本权衡。
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5755-5760. doi: 10.1073/pnas.1615660114. Epub 2017 May 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验