Lemskaya Natalya A, Kulemzina Anastasia I, Beklemisheva Violetta R, Biltueva Larisa S, Proskuryakova Anastasia A, Hallenbeck John M, Perelman Polina L, Graphodatsky Alexander S
Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.
Novosibirsk State University, Novosibirsk, Russia.
Chromosome Res. 2018 Dec;26(4):307-315. doi: 10.1007/s10577-018-9589-9. Epub 2018 Nov 15.
Сonstitutive heterochromatin areas are revealed by differential staining as C-positive chromosomal regions. These C-positive bands may greatly vary by location, size, and nucleotide composition. CBG-banding is the most commonly used method to detect structural heterochromatin in animals. The difficulty in identification of individual chromosomes represents an unresolved problem of this method as the body of the chromosome is stained uniformly and does not have banding pattern beyond C-bands. Here, we present the method that we called CDAG for sequential heterochromatin staining after differential GTG-banding. The method uses G-banding followed by heat denaturation in the presence of formamide with consecutive fluorochrome staining. The new technique is valid for the concurrent revealing of heterochromatin position due to differential banding of chromosomes and heterochromatin composition (AT-/GC-rich) in animal karyotyping.
组成型异染色质区域通过差异染色显示为C阳性染色体区域。这些C阳性带在位置、大小和核苷酸组成上可能有很大差异。CBG显带是检测动物结构异染色质最常用的方法。识别单个染色体的困难是该方法尚未解决的问题,因为染色体主体被均匀染色,除了C带之外没有带型。在这里,我们介绍了一种我们称为CDAG的方法,用于在差异GTG显带后进行连续异染色质染色。该方法先进行G显带,然后在甲酰胺存在下进行热变性,并连续进行荧光染料染色。这项新技术对于在动物核型分析中同时揭示由于染色体差异显带和异染色质组成(富含AT/GC)导致的异染色质位置是有效的。