School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China.
Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medicine College, Beijing 100021, P. R. China.
Small. 2018 Dec;14(51):e1802112. doi: 10.1002/smll.201802112. Epub 2018 Nov 16.
Although polymeric micelles of paclitaxel (PTX) significantly reduce excipient-induced toxicity compared with Taxol, they exhibit few clinical advantages in tumor inhibition and overall survival. To improve, itraconazole (ITA), an antifungal drug with potent anti-angiogenesis activity, is co-encapsulated together with PTX within the PEG-PLA micelles. The strong intermolecular interactions between the payloads inhibit drug crystallization and prevent drugs from binding with external proteins, render super-stable micelles upon dilution and exposure to biological environment, and enter the tumor cells through endocytosis. The co-encapsulated micelles show strong anti-proliferation potency against non-small-cell lung cancer (NSCLC) and even PTX resistant NSCLC cells in vitro and significantly improve the drug accumulation within the tumor in vivo. Compared with PTX monotherapy or combination therapy using individual PTX and ITA micelles, the co-encapsulated micelle demonstrates strikingly superior efficacy in tumor growth inhibition, recurrence prevention, and reversion of PTX resistance, in Kras mutant patient derived xenografts, orthotropic models, and paclitaxel-resistance subcutaneous models. Besides the pharmacokinetic improvement, therapeutic benefits are also contributed by angiogenesis inhibition and blood vessel normalization by ITA. Utilizing the pharmaceutical and pharmacological synergies between the therapeutic agents, a simple yet effective design of a combination cancer nanomedicine that is industrially scalable and clinically translatable is achieved.
尽管紫杉醇(PTX)的聚合物胶束与 Taxol 相比显著降低了赋形剂诱导的毒性,但在肿瘤抑制和总体生存方面它们表现出很少的临床优势。为了改善这一点,将具有强大抗血管生成活性的抗真菌药物伊曲康唑(ITA)与 PTX 共同包封在 PEG-PLA 胶束内。载药之间的强分子间相互作用抑制药物结晶,并防止药物与外部蛋白质结合,在稀释和暴露于生物环境时使胶束超稳定,并通过内吞作用进入肿瘤细胞。共包封的胶束在体外对非小细胞肺癌(NSCLC)甚至 PTX 耐药的 NSCLC 细胞显示出强大的抗增殖活性,并显著增加了体内肿瘤内的药物积累。与 PTX 单药治疗或使用单独的 PTX 和 ITA 胶束的联合治疗相比,共包封胶束在 Kras 突变的患者衍生异种移植、原位模型和紫杉醇耐药皮下模型中在肿瘤生长抑制、复发预防和逆转 PTX 耐药方面表现出明显更好的疗效。除了药代动力学改善外,ITA 的血管生成抑制和血管正常化也为治疗带来了益处。利用治疗剂之间的药物协同作用,实现了一种简单而有效的组合癌症纳米医学设计,该设计具有工业可扩展性和临床转化性。