Suppr超能文献

扫描、驻留、决策:糖尿病视网膜病变异常检测策略。

Scan, dwell, decide: Strategies for detecting abnormalities in diabetic retinopathy.

机构信息

Center for Visual Information Technology, International Institute of Technology, Hyderabad, India.

Cognitive Science Lab, International Institute of Information Technology, Hyderabad, India.

出版信息

PLoS One. 2018 Nov 16;13(11):e0207086. doi: 10.1371/journal.pone.0207086. eCollection 2018.

Abstract

Diabetic retinopathy (DR) is a disease which is widely diagnosed using (colour fundus) images. Efficiency and accuracy are critical in diagnosing DR as lack of timely intervention can lead to irreversible visual impairment. In this paper, we examine strategies for scrutinizing images which affect diagnostic performance of medical practitioners via an eye-tracking study. A total of 56 subjects with 0 to 18 years of experience participated in the study. Every subject was asked to detect DR from 40 images. The findings indicate that practitioners use mainly two types of strategies characterized by either higher dwell duration or longer track length. The main findings of the study are that higher dwell-based strategy led to higher average accuracy (> 85%) in diagnosis, irrespective of the expertise of practitioner; whereas, the average obtained accuracy with a long-track length-based strategy was dependent on the expertise of the practitioner. In the second part of the paper, we use the experimental findings to recommend a scanning strategy for fast and accurate diagnosis of DR that can be potentially used by image readers. This is derived by combining the eye-tracking gaze maps of medical experts in a novel manner based on a set of rules. This strategy requires scrutiny of images in a manner which is consistent with spatial preferences found in human perception in general and in the domain of fundus images in particular. The Levenshtein distance-based assessment of gaze patterns also establish the effectiveness of the derived scanning pattern and is thus recommended for image readers.

摘要

糖尿病视网膜病变(DR)是一种广泛使用(彩色眼底)图像进行诊断的疾病。在诊断 DR 时,效率和准确性至关重要,因为缺乏及时的干预可能会导致不可逆转的视力损害。在本文中,我们通过眼动研究检查了影响医学从业者诊断性能的图像分析策略。共有 56 名具有 0 至 18 年经验的受试者参加了这项研究。每个受试者都被要求从 40 张图像中检测 DR。研究结果表明,医生主要使用两种策略,一种是以注视时间较长为特征,另一种是以注视轨迹较长为特征。研究的主要发现是,基于注视时间的策略无论医生的经验如何,都能导致更高的平均准确率(>85%);而基于长轨迹长度的策略的平均准确率则取决于医生的经验。在本文的第二部分,我们根据一套规则,以一种新颖的方式结合医学专家的实验发现,推荐一种快速准确诊断 DR 的扫描策略,该策略可能被图像阅读器使用。这种策略要求以一种与人类感知(尤其是眼底图像领域)的空间偏好一致的方式来仔细检查图像。基于莱文斯坦距离的注视模式评估也证实了所得到的扫描模式的有效性,因此建议图像阅读器使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ea7/6239282/30ba316767c8/pone.0207086.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验