Suppr超能文献

利用深度视觉特征自动识别糖尿病性视网膜病变的严重程度分级。

Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features.

机构信息

College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.

Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092, Seville, Spain.

出版信息

Med Biol Eng Comput. 2017 Nov;55(11):1959-1974. doi: 10.1007/s11517-017-1638-6. Epub 2017 Mar 28.

Abstract

Diabetic retinopathy (DR) is leading cause of blindness among diabetic patients. Recognition of severity level is required by ophthalmologists to early detect and diagnose the DR. However, it is a challenging task for both medical experts and computer-aided diagnosis systems due to requiring extensive domain expert knowledge. In this article, a novel automatic recognition system for the five severity level of diabetic retinopathy (SLDR) is developed without performing any pre- and post-processing steps on retinal fundus images through learning of deep visual features (DVFs). These DVF features are extracted from each image by using color dense in scale-invariant and gradient location-orientation histogram techniques. To learn these DVF features, a semi-supervised multilayer deep-learning algorithm is utilized along with a new compressed layer and fine-tuning steps. This SLDR system was evaluated and compared with state-of-the-art techniques using the measures of sensitivity (SE), specificity (SP) and area under the receiving operating curves (AUC). On 750 fundus images (150 per category), the SE of 92.18%, SP of 94.50% and AUC of 0.924 values were obtained on average. These results demonstrate that the SLDR system is appropriate for early detection of DR and provide an effective treatment for prediction type of diabetes.

摘要

糖尿病性视网膜病变(DR)是糖尿病患者失明的主要原因。眼科医生需要识别严重程度级别,以便及早发现和诊断 DR。然而,由于需要广泛的领域专家知识,这对医学专家和计算机辅助诊断系统来说都是一项具有挑战性的任务。在本文中,开发了一种新颖的自动识别系统,用于通过学习深度视觉特征(DVF)对糖尿病性视网膜病变的五个严重程度级别(SLDR)进行无任何预处理和后处理步骤的视网膜眼底图像识别。这些 DVF 特征是通过使用颜色密集的尺度不变和梯度位置方向直方图技术从每张图像中提取的。为了学习这些 DVF 特征,利用半监督多层深度学习算法以及新的压缩层和微调步骤。该 SLDR 系统使用灵敏度(SE)、特异性(SP)和接收操作曲线下面积(AUC)等措施进行了评估,并与最先进的技术进行了比较。在 750 张眼底图像(每类 150 张)上,平均获得了 92.18%的 SE、94.50%的 SP 和 0.924 的 AUC 值。这些结果表明,该 SLDR 系统适用于 DR 的早期检测,并为预测型糖尿病提供了有效的治疗方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验