Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA.
Mol Cell. 2018 Nov 15;72(4):610-624. doi: 10.1016/j.molcel.2018.10.023.
Growing appreciation of the diversity of post-translational modifications (PTMs) in the mitochondria necessitates reevaluation of the roles these modifications play in both health and disease. Compared to the cytosol and nucleus, the mitochondrial proteome is highly acylated, and remodeling of the mitochondrial "acylome" is a key adaptive mechanism that regulates fundamental aspects of mitochondrial biology. It is clear that we need to understand the underlying chemistry that regulates mitochondrial acylation, as well as how chemical properties of the acyl chain impact biological functions. Here, we dissect the sources of PTMs in the mitochondria, review major mitochondrial pathways that control levels of PTMs, and highlight how sirtuin enzymes respond to the bioenergetic state of the cell via NAD availability to regulate mitochondrial biology. By providing a framework connecting the chemistry of these modifications, their biochemical consequences, and the pathways that regulate the levels of acyl PTMs, we will gain a deeper understanding of the physiological significance of mitochondrial acylation and its role in mitochondrial adaptation.
对线粒体中转译后修饰(PTMs)多样性的认识不断提高,这就需要重新评估这些修饰在健康和疾病中的作用。与细胞质和细胞核相比,线粒体蛋白质组高度酰化,线粒体“酰基组”的重塑是一种关键的适应机制,可调节线粒体生物学的基本方面。显然,我们需要了解调节线粒体酰化的基础化学,以及酰链的化学性质如何影响生物学功能。在这里,我们剖析了线粒体中 PTM 的来源,综述了主要的线粒体途径来控制 PTM 的水平,并强调了组蛋白去乙酰化酶如何通过 NAD 的可用性来响应细胞的生物能状态来调节线粒体生物学。通过提供一个连接这些修饰的化学性质、它们的生化后果以及调节酰基 PTM 水平的途径的框架,我们将更深入地了解线粒体酰化的生理意义及其在线粒体适应中的作用。