Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France.
Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
Cell. 2018 Nov 15;175(5):1365-1379.e25. doi: 10.1016/j.cell.2018.10.039.
The exchange of metabolites between the mitochondrial matrix and the cytosol depends on β-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and β-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and β-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.
线粒体基质和细胞质之间的代谢物交换依赖于外膜中的β-桶通道和内膜中的α-螺旋载体蛋白。内膜的必需易位子(TIM)伴侣蛋白通过膜间空间护送这些蛋白,但结构和机制细节仍不清楚。我们使用综合结构生物学方法揭示了 TIM 伴侣蛋白的功能原理。多个类似夹子的结合位点以易位相容的伸长形式固定线粒体膜蛋白,从而模拟共翻译膜插入的特征。结合的前体蛋白在伴侣蛋白结合裂缝内发生构象动力学,表明存在大量动态局部结合事件。这些结合位点的突变会导致细胞死亡或生长缺陷,与载体和β-桶蛋白生物发生的损伤有关。我们的工作揭示了单一的线粒体“转移伴侣”系统如何能够在无核糖体的隔室中以“新生链样”构象引导α-螺旋和β-桶膜蛋白。