Suppr超能文献

EmoTour:基于行为线索和视听数据估算用户的情绪和满意度。

EmoTour: Estimating Emotion and Satisfaction of Users Based on Behavioral Cues and Audiovisual Data.

机构信息

Graduate School of Information Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.

Institute of Communications Engineering, Ulm University, 89081 Ulm, Germany.

出版信息

Sensors (Basel). 2018 Nov 15;18(11):3978. doi: 10.3390/s18113978.

Abstract

With the spread of smart devices, people may obtain a variety of information on their surrounding environment thanks to sensing technologies. To design more context-aware systems, psychological user context (e.g., emotional status) is a substantial factor for providing useful information in an appropriate timing. As a typical use case that has a high demand for context awareness but is not tackled widely yet, we focus on the tourism domain. In this study, we aim to estimate the emotional status and satisfaction level of tourists during sightseeing by using unconscious and natural tourist actions. As tourist actions, behavioral cues (eye and head/body movement) and audiovisual data (facial/vocal expressions) were collected during sightseeing using an eye-gaze tracker, physical-activity sensors, and a smartphone. Then, we derived high-level features, e.g., head tilt and footsteps, from behavioral cues. We also used existing databases of emotionally rich interactions to train emotion-recognition models and apply them in a cross-corpus fashion to generate emotional-state prediction for the audiovisual data. Finally, the features from several modalities are fused to estimate the emotion of tourists during sightseeing. To evaluate our system, we conducted experiments with 22 tourists in two different touristic areas located in Germany and Japan. As a result, we confirmed the feasibility of estimating both the emotional status and satisfaction level of tourists. In addition, we found that effective features used for emotion and satisfaction estimation are different among tourists with different cultural backgrounds.

摘要

随着智能设备的普及,人们可以通过感测技术获取周围环境的各种信息。为了设计更具情境感知能力的系统,心理用户情境(例如情绪状态)是在适当的时间提供有用信息的重要因素。作为一个具有高度情境感知需求但尚未广泛解决的典型用例,我们专注于旅游领域。在这项研究中,我们旨在通过使用无意识和自然的游客行为来估计游客在观光时的情绪状态和满意度。作为游客行为,使用眼动追踪器、身体活动传感器和智能手机在观光期间收集了行为线索(眼动和头部/身体运动)和视听数据(面部/声音表情)。然后,我们从行为线索中推导出高级特征,例如头部倾斜和脚步。我们还使用现有的情感丰富交互数据库来训练情感识别模型,并以跨语料库的方式应用它们,以生成视听数据的情感状态预测。最后,融合来自多个模态的特征来估计游客在观光时的情绪。为了评估我们的系统,我们在德国和日本的两个不同旅游区进行了 22 名游客的实验。结果证实了估计游客情绪状态和满意度的可行性。此外,我们发现,具有不同文化背景的游客在用于情感和满意度估计的有效特征方面存在差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e008/6263657/404504c3fd49/sensors-18-03978-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验