Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
Biol Psychiatry. 2019 Feb 1;85(3):257-267. doi: 10.1016/j.biopsych.2018.09.019. Epub 2018 Oct 5.
Aging is accompanied by altered thinking (cognition) and feeling (mood), functions that depend on information processing by brain cortical cell microcircuits. We hypothesized that age-associated long-term functional and biological changes are mediated by gene transcriptomic changes within neuronal cell types forming cortical microcircuits, namely excitatory pyramidal cells (PYCs) and inhibitory gamma-aminobutyric acidergic neurons expressing vasoactive intestinal peptide (Vip), somatostatin (Sst), and parvalbumin (Pvalb).
To test this hypothesis, we assessed locomotor, anxiety-like, and cognitive behavioral changes between young (2 months of age, n = 9) and old (22 months of age, n = 12) male C57BL/6 mice, and performed frontal cortex cell type-specific molecular profiling, using laser capture microscopy and RNA sequencing. Results were analyzed by neuroinformatics and validated by fluorescent in situ hybridization.
Old mice displayed increased anxiety and reduced working memory. The four cell types displayed distinct age-related transcriptomes and biological pathway profiles, affecting metabolic and cell signaling pathways, and selective markers of neuronal vulnerability (Ryr3), resilience (Oxr1), and mitochondrial dynamics (Opa1), suggesting high age-related vulnerability of PYCs, and variable degree of adaptation in gamma-aminobutyric acidergic neurons. Correlations between gene expression and behaviors suggest that changes in cognition and anxiety associated with age are partly mediated by normal age-related cell changes, and that additional age-independent decreases in synaptic and signaling pathways, notably in PYCs and somatostatin neurons, further contribute to behavioral changes.
Our study demonstrates cell-dependent differential vulnerability and coordinated cell-specific cortical microcircuit molecular changes with age. Collectively, the results suggest intrinsic molecular links among aging, cognition, and mood-related behaviors, with somatostatin neurons contributing evenly to both behavioral conditions.
衰老伴随着思维(认知)和感觉(情绪)的改变,这些功能依赖于大脑皮质细胞微电路的信息处理。我们假设,与年龄相关的长期功能和生物学变化是由形成皮质微电路的神经元细胞类型(即兴奋性锥体神经元[PYCs]和表达血管活性肠肽[VIP]、生长抑素[Sst]和 parvalbumin[Pvalb]的抑制性γ-氨基丁酸能神经元)内的基因转录组变化介导的。
为了验证这一假设,我们评估了年轻(2 个月龄,n=9)和老年(22 个月龄,n=12)雄性 C57BL/6 小鼠之间的运动、焦虑样和认知行为变化,并使用激光捕获显微镜和 RNA 测序对前额皮质细胞类型特异性分子特征进行了分析。结果通过神经信息学进行分析,并通过荧光原位杂交进行验证。
老年小鼠表现出焦虑增加和工作记忆减少。四种细胞类型表现出不同的与年龄相关的转录组和生物学途径特征,影响代谢和细胞信号通路,以及神经元易损性(Ryr3)、弹性(Oxr1)和线粒体动力学(Opa1)的选择性标志物,提示 PYCs 具有较高的年龄相关易损性,而γ-氨基丁酸能神经元的适应性程度不同。基因表达与行为之间的相关性表明,与年龄相关的认知和焦虑变化部分是由正常的年龄相关细胞变化介导的,而突触和信号通路的年龄独立减少,特别是在 PYCs 和生长抑素神经元中,进一步导致行为变化。
我们的研究表明,细胞依赖性的差异易损性和与年龄相关的皮质微电路分子变化具有协调性。总的来说,这些结果表明衰老、认知和与情绪相关的行为之间存在内在的分子联系,生长抑素神经元对这两种行为条件的贡献均等。