Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata, 700064, India.
Sci Rep. 2018 Nov 16;8(1):16925. doi: 10.1038/s41598-018-35236-3.
Fructokinase (FRK) catalyzes the first step of fructose metabolism i.e., D-fructose to D-fructose-6-phosphate (F6P), however, the mechanistic insights of this reaction are elusive yet. Here we demonstrate that the putative Vibrio cholerae fructokinase (VcFRK) exhibit strong fructose-6-kinase activity allosterically modulated by K/Cs. We have determined the crystal structures of apo-VcFRK and its complex with fructose, fructose-ADP-Ca, fructose-ADP-Ca-BeF. Collectively, we propose the catalytic mechanism and allosteric activation of VcFRK in atomistic details explaining why K/Cs are better activator than Na. Structural results suggest that apo VcFRK allows entry of fructose in the active site, sequester it through several conserved H-bonds and attains a closed form through large scale conformational changes. A double mutant (H108C/T261C-VcFRK), that arrests the closed form but unable to reopen for F6P release, is catalytically impotent highlighting the essentiality of this conformational change. Negative charge accumulation around ATP upon fructose binding, is presumed to redirect the γ-phosphate towards fructose for efficient phosphotransfer. Reduced phosphotransfer rate of the mutants E205Q and E110Q supports this view. Atomic resolution structure of VcFRK-fructose-ADP-Ca-BeF, reported first time for any sugar kinase, suggests that BeF moiety alongwith R176, Ca and 'anion hole' limit the conformational space for γ-phosphate favoring in-line phospho-transfer.
果糖激酶 (FRK) 催化果糖代谢的第一步,即 D-果糖转化为 D-果糖-6-磷酸 (F6P),然而,该反应的机制仍不清楚。在这里,我们证明了假定的霍乱弧菌果糖激酶 (VcFRK) 表现出强烈的果糖-6-激酶活性,通过 K/Cs 进行变构调节。我们已经确定了 apo-VcFRK 及其与果糖、果糖-ADP-Ca、果糖-ADP-Ca-BeF 复合物的晶体结构。总的来说,我们提出了 VcFRK 的催化机制和变构激活的原子细节,解释了为什么 K/Cs 比 Na 更好的激活剂。结构结果表明,apo-VcFRK 允许果糖进入活性位点,通过几个保守的氢键将其隔离,并通过大规模构象变化达到封闭形式。一个双突变体 (H108C/T261C-VcFRK),它阻止了封闭形式但无法为 F6P 释放重新打开,是无催化活性的,突出了这种构象变化的必要性。果糖结合后在 ATP 周围积累负电荷,据推测会将 γ-磷酸重新定向到果糖以进行有效的磷酸转移。突变体 E205Q 和 E110Q 的磷酸转移率降低支持了这一观点。首次报道的 VcFRK-果糖-ADP-Ca-BeF 的原子分辨率结构,表明 BeF 部分以及 R176、Ca 和“阴离子穴”限制了 γ-磷酸的构象空间,有利于直链磷酸转移。