Department of Animal Science, Cornell University, Ithaca, NY 14853; Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa 7600.
Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY 14853.
J Dairy Sci. 2019 Jan;102(1):351-364. doi: 10.3168/jds.2018-15102. Epub 2018 Nov 15.
The digestion of neutral detergent fiber treated with amylase and sodium sulfite and ash corrected (aNDFom) has been described as a single digestible pool and a fraction undigested in ruminants. Further, most models that predict rate and extent of digestion of aNDFom in the rumen assume first-order processes, in which the rates of digestion and passage are proportional to the pool size of aNDFom consumed and digested. Data exist demonstrating that the undigested fraction of aNDFom is not well described by a fixed coefficient and varies by maturity and agronomic growing conditions of the plant. Thus, our objective was to improve the prediction of digestible aNDFom (pdNDF) and to quantify, using a minimum number of fermentation time points, 2 pools of digestible aNDFom, pdNDF and pdNDF, and their respective rates. Based on fermentations from 0 to 240 h among 34 forages (grasses, conventional and brown midrib corn silages, and alfalfas), 3 pools were described by aNDFom = pdNDF × e + pdNDF × e + uNDF, where aNDFom is the residue at time t; L is the lag; k is the rate of digestion of pdNDF; k is the rate of digestion of pdNDF; and uNDF the unavailable NDF on an aNDFom basis. A nonlinear estimation allowed the computation of the pool size and respective digestion rates. Using 3 time points from the digestion curve, 30, 120, and 240 h, as the fermentation endpoints to represent uNDF, we optimized the same model in Vensim (Ventana Simulation Environment; Ventana Systems Inc., Belmont, MA) to obtain rates and pool sizes of aNDFom. In addition, the same optimization was also performed with 2 timepoints and a forage type-specific range for uNDF. Parameters (with and without uNDF) obtained per forage using Vensim were compared by fitting kinetics data from the nonlinear calculations, using coefficients of determination and residual mean squares at convergence for ranking purposes for the whole equation and mean squared prediction errors for specific parameters. The highest coefficient of determination (0.98) and lowest mean square prediction error [0.0927 (NDF)] were obtained when using 48, 120, and 240 h of aNDFom residues or when using 30 and 120 h and a range for the forage-specific uNDFom. Correlations were in all cases consistently high for all kinetic parameters, ranging from 0.76 to 0.99. Results demonstrated that an adequate description of the heterogeneity of aNDFom disappearance was possible without multiple fermentation time points. The equation was fit to all data generated; however, because of the variable nature of pool sizes and rates, forage-specific equations should be developed for better estimations of the forage specific pool sizes and uNDF estimation. This study further describes the heterogeneous nature of aNDFom disappearance and provides an approach for estimating the individual pool sizes and rates of digestion for application for diet formulation.
用淀粉酶和亚硫酸钠处理的中性洗涤纤维消化(aNDFom)已被描述为一个可消化的单一池和一个在反刍动物中未消化的部分。此外,大多数预测 aNDFom 在瘤胃中消化率和消化程度的模型都假设为一级过程,其中消化和通过的速率与消耗和消化的 aNDFom 池大小成正比。有数据表明,aNDFom 的未消化部分不能用固定系数很好地描述,并且因植物的成熟度和农业生长条件而异。因此,我们的目标是提高可消化 aNDFom(pdNDF)的预测,并使用尽可能少的发酵时间点来量化 2 个可消化 aNDFom 池,pdNDF 和 pdNDF,以及它们各自的速率。基于 34 种饲草(草、常规和棕色中脉玉米青贮和紫花苜蓿)在 0 至 240 小时的发酵数据,aNDFom = pdNDF × e + pdNDF × e + uNDF 描述了 3 个池,其中 aNDFom 是 t 时刻的残渣;L 是滞后;k 是 pdNDF 的消化速率;k 是 pdNDF 的消化速率;uNDF 是 aNDFom 基础上不可用的 NDF。非线性估计允许计算池的大小和各自的消化速率。使用消化曲线的 3 个时间点(30、120 和 240 h)作为发酵终点来表示 uNDF,我们在 Vensim(Ventana Simulation Environment;Ventana Systems Inc.,Belmont,MA)中优化了相同的模型,以获得 aNDFom 的速率和池大小。此外,还针对 uNDF 对相同的优化进行了 2 个时间点和饲草类型特定范围的优化。使用 Vensim 获得的每个饲草的参数(有和没有 uNDF)通过使用非线性计算的动力学数据进行拟合,使用决定系数和收敛时的均方根残差进行排名,用于整个方程和特定参数的均方预测误差。当使用 aNDFom 残渣的 48、120 和 240 h 或使用 30 和 120 h 以及特定饲草的 uNDFom 范围时,获得了最高的决定系数(0.98)和最低的均方预测误差[0.0927(NDF)]。对于整个方程和特定参数的均方预测误差,使用 48、120 和 240 h 的 aNDFom 残渣或使用 30 和 120 h 以及特定饲草的 uNDFom 范围时,获得了最高的决定系数(0.98)和最低的均方预测误差[0.0927(NDF)]。对于整个方程和特定参数的均方预测误差,使用 48、120 和 240 h 的 aNDFom 残渣或使用 30 和 120 h 以及特定饲草的 uNDFom 范围时,获得了最高的决定系数(0.98)和最低的均方预测误差[0.0927(NDF)]。对于整个方程和特定参数的均方预测误差,使用 48、120 和 240 h 的 aNDFom 残渣或使用 30 和 120 h 以及特定饲草的 uNDFom 范围时,获得了最高的决定系数(0.98)和最低的均方预测误差[0.0927(NDF)]。结果表明,无需多个发酵时间点即可对 aNDFom 消失的异质性进行充分描述。该方程适用于所有生成的数据;然而,由于池大小和速率的可变性质,应该为更好地估计特定饲草的池大小和 uNDF 估计开发特定饲草的方程。本研究进一步描述了 aNDFom 消失的异质性,并提供了一种估计单个池大小和消化速率的方法,可用于饲料配方。