Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Am Coulombwall 1, 85748 Garching, Germany.
Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 München, Germany.
Z Med Phys. 2019 Aug;29(3):249-261. doi: 10.1016/j.zemedi.2018.10.005. Epub 2018 Nov 14.
Inter-fractional variations of breathing pattern and patient anatomy introduce dose uncertainties in proton therapy. One approach to monitor these variations is to utilize the cone-beam computed tomography (CT, CBCT) scans routinely taken for patient positioning, reconstruct them as 4DCBCTs, and generate 'virtual CTs' (vCTs), combining the accurate CT numbers of the diagnostic 4DCT and the geometry of the daily 4DCBCT by using deformable image registration (DIR). In this study different algorithms for 4DCBCT reconstruction and DIR were evaluated. For this purpose, CBCT scans of a moving ex vivo porcine lung phantom with 663 and 2350 projections respectively were acquired, accompanied by an additional 4DCT as reference. The CBCT projections were sorted in 10 phase bins with the Amsterdam-shroud method and reconstructed phase-by-phase using first a FDK reconstruction from the Reconstruction Toolkit (RTK) and again an iterative reconstruction algorithm implemented in the Gadgetron Toolkit. The resulting 4DCBCTs were corrected by DIR of the corresponding 4DCT phases, using both a morphons algorithm from REGGUI and a b-spline deformation from Plastimatch. The resulting 4DvCTs were compared to the 4DCT by visual inspection and by calculating water equivalent thickness (WET) maps from the phantom's surface to the distal edge of a target from various angles. The optimized procedure was successfully repeated with mismatched input phases and on a clinical patient dataset. Proton treatment plans were simulated on the 4DvCTs and the dose distributions compared to the reference based on the 4DCT via gamma pass rate analysis. A combination of iterative reconstruction and morphons DIR yielded the most accurate 4DvCTs, with median WET differences under 2mm and 3%/3mm gamma pass rates per phase between 89% and 99%. These results suggest that image correction of iteratively reconstructed 4DCBCTs with a morphons DIR of the planning CT may yield sufficiently accurate 4DvCTs for daily time resolved proton dose calculations.
分次间呼吸模式和患者解剖结构的变化会给质子治疗带来剂量不确定性。一种监测这些变化的方法是利用常规用于患者定位的锥形束计算机断层扫描(CBCT)扫描,将其重建为 4D-CBCT,并通过变形图像配准(DIR)生成“虚拟 CT”(vCT),将诊断性 4DCT 的精确 CT 值与每日 4D-CBCT 的几何形状相结合。在这项研究中,评估了用于 4D-CBCT 重建和 DIR 的不同算法。为此,获取了一个带有 663 和 2350 个投影的移动离体猪肺体模的 CBCT 扫描,同时还获得了额外的 4DCT 作为参考。使用阿姆斯特丹罩方法将 CBCT 投影分为 10 个相位箱,并使用重建工具包(RTK)中的 FDK 重建逐个相位重建,然后再次使用 Gadgetron 工具包中实现的迭代重建算法进行重建。使用来自 REGGUI 的 morphons 算法和来自 Plastimatch 的 b-样条变形对相应的 4DCT 相位进行 DIR 校正,得到的 4D-CBCT。通过视觉检查和从各个角度计算水当量厚度(WET)图,将生成的 4DvCT 与 4DCT 进行比较,这些图是从体模表面到目标远端边缘的。使用不匹配的输入相位和临床患者数据集成功重复了优化过程。在 4DvCT 上模拟质子治疗计划,并通过伽马通过率分析基于 4DCT 比较剂量分布与参考剂量分布。迭代重建和 morphons DIR 的组合产生了最准确的 4DvCT,每个相位的中位数 WET 差异小于 2mm,89%至 99%的 3%/3mm 伽马通过率。这些结果表明,使用计划 CT 的 morphons DIR 对迭代重建的 4D-CBCT 进行图像校正,可能会产生足够准确的 4DvCT,用于每天时间分辨的质子剂量计算。