Chang Chih-Wei, Lei Yang, Wang Tonghe, Tian Sibo, Roper Justin, Lin Liyong, Bradley Jeffrey, Liu Tian, Zhou Jun, Yang Xiaofeng
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322.
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065.
IEEE Trans Radiat Plasma Med Sci. 2024 Nov;8(8):973-983. doi: 10.1109/trpms.2024.3439585.
Very fast imaging techniques can enhance the precision of image-guided radiation therapy, which can be useful for external beam radiation therapy. This work aims to develop a deep learning (DL)-based image-guide framework to enable fast volumetric image reconstruction for accurate target localization for treating lung cancer patients with gating, and it is presented in the context of FLASH which leverages ultra-high dose-rate radiation to enhance the sparing of organs at risk without compromising tumor control probability. The proposed framework comprises four modules, including orthogonal kV x-ray projection acquisition, DL-based volumetric image generation, image quality analyses, and proton water equivalent thickness (WET) evaluation. We investigated volumetric image reconstruction using kV projection pairs with four different source angles. Thirty patients with lung targets were identified from an institutional database, each patient having a four-dimensional computed tomography (CT) dataset with ten respiratory phases. Considering all evaluation metrics, the kV projections with source angles of 135° and 225° yielded the optimal volumetric images. The patient-averaged mean absolute error, peak signal-to-noise ratio, structural similarity index measure, and WET error were 75±22 HU, 19±3.7 dB, 0.938±0.044, and -1.3%±4.1%. The proposed framework can rapidly deliver volumetric images to potentially guide proton FLASH treatment delivery systems.
超快速成像技术可以提高图像引导放射治疗的精度,这对于外照射放射治疗可能是有用的。这项工作旨在开发一种基于深度学习(DL)的图像引导框架,以实现快速的容积图像重建,用于在门控治疗肺癌患者时进行精确的靶区定位,并且该框架是在FLASH的背景下提出的,FLASH利用超高剂量率辐射来提高危及器官的 sparing,而不影响肿瘤控制概率。所提出的框架包括四个模块,包括正交千伏X射线投影采集、基于DL的容积图像生成、图像质量分析和质子水等效厚度(WET)评估。我们使用具有四个不同源角度的千伏投影对研究了容积图像重建。从机构数据库中识别出30名有肺部靶区的患者,每名患者有一个包含十个呼吸期的四维计算机断层扫描(CT)数据集。考虑所有评估指标,源角度为135°和225°的千伏投影产生了最佳的容积图像。患者平均平均绝对误差、峰值信噪比、结构相似性指数测量和WET误差分别为75±22 HU、19±3.7 dB、0.938±0.044和-1.3%±4.1%。所提出的框架可以快速提供容积图像,以潜在地指导质子FLASH治疗输送系统。