Suppr超能文献

基于变分贝叶斯和转换后验 Sigma 点误差的鲁棒容积卡尔曼滤波器。

Robust cubature Kalman filter based on variational Bayesian and transformed posterior sigma points error.

机构信息

Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education & Jiangsu Province, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education & Jiangsu Province, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

出版信息

ISA Trans. 2019 Mar;86:18-28. doi: 10.1016/j.isatra.2018.11.005. Epub 2018 Nov 9.

Abstract

An improved robust cubature Kalman filter (RCKF) based on variational Bayesian (VB) and transformed posterior sigma points error is proposed in this paper, which not only retains the robustness of RCKF, but also exhibits adaptivity in the presence of time-varying noise. First, a novel sigma-point update framework with uncertainties reduction is developed by employing the transformed posterior sigma points error. Then the VB is used to estimate the time-varying measurement noise, where the state-dependent noise is addressed in the iteratively parameter estimation. The new filter not only reduces the uncertainty on sigma points generation but also accelerates the convergence of VB-based noise estimation. The effectiveness of the proposed filter is verified on integrated navigation, and numerical simulations demonstrate that VB-RCKF outperforms VB-CKF and RCKF.

摘要

本文提出了一种基于变分贝叶斯(VB)和转换后验 Sigma 点误差的改进鲁棒容积卡尔曼滤波器(RCKF),该滤波器不仅保留了 RCKF 的鲁棒性,而且在时变噪声存在的情况下具有自适应能力。首先,通过采用转换后验 Sigma 点误差,开发了一种具有不确定性降低功能的新 Sigma 点更新框架。然后,利用 VB 来估计时变测量噪声,其中在迭代参数估计中处理状态相关噪声。新滤波器不仅减少了 Sigma 点生成的不确定性,而且还加快了 VB 噪声估计的收敛速度。在组合导航中验证了所提出的滤波器的有效性,数值模拟表明 VB-RCKF 优于 VB-CKF 和 RCKF。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验