Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, UK.
Genome Damage and Stability Centre, University of Sussex, Science Park Road, Brighton BN1 9RQ, UK.
Curr Biol. 2018 Dec 3;28(23):3824-3832.e6. doi: 10.1016/j.cub.2018.09.059. Epub 2018 Nov 15.
Distinct protein phosphorylation levels in interphase and M phase require tight regulation of Cdk1 activity [1, 2]. A bistable switch, based on positive feedback in the Cdk1 activation loop, has been proposed to generate different thresholds for transitions between these cell-cycle states [3-5]. Recently, the activity of the major Cdk1-counteracting phosphatase, PP2A:B55, has also been found to be bistable due to Greatwall kinase-dependent regulation [6]. However, the interplay of the regulation of Cdk1 and PP2A:B55 in vivo remains unexplored. Here, we combine quantitative cell biology assays with mathematical modeling to explore the interplay of mitotic kinase activation and phosphatase inactivation in human cells. By measuring mitotic entry and exit thresholds using ATP-analog-sensitive Cdk1 mutants, we find evidence that the mitotic switch displays hysteresis and bistability, responding differentially to Cdk1 inhibition in the mitotic and interphase states. Cdk1 activation by Wee1/Cdc25 feedback loops and PP2A:B55 inactivation by Greatwall independently contributes to this hysteretic switch system. However, elimination of both Cdk1 and PP2A:B55 inactivation fully abrogates bistability, suggesting that hysteresis is an emergent property of mutual inhibition between the Cdk1 and PP2A:B55 feedback loops. Our model of the two interlinked feedback systems predicts an intermediate but hidden steady state between interphase and M phase. This could be verified experimentally by Cdk1 inhibition during mitotic entry, supporting the predictive value of our model. Furthermore, we demonstrate that dual inhibition of Wee1 and Gwl kinases causes loss of cell-cycle memory and synthetic lethality, which could be further exploited therapeutically.
有丝分裂期和 M 期之间不同的蛋白磷酸化水平需要严格调控 Cdk1 的活性[1,2]。基于 Cdk1 激活环中的正反馈,人们提出了双稳态开关,以产生这些细胞周期状态之间转变的不同阈值[3-5]。最近,由于依赖于 Greatwall 激酶的调节,主要的 Cdk1 拮抗磷酸酶 PP2A:B55 的活性也被发现具有双稳态[6]。然而,体内 Cdk1 和 PP2A:B55 的调控相互作用仍未被探索。在这里,我们结合定量细胞生物学测定和数学建模来探索有丝分裂激酶激活和磷酸酶失活在人类细胞中的相互作用。通过使用 ATP 类似物敏感的 Cdk1 突变体测量有丝分裂的进入和退出阈值,我们发现有丝分裂开关表现出滞后和双稳态的证据,对有丝分裂和间期状态下的 Cdk1 抑制有不同的反应。Wee1/Cdc25 反馈环对 Cdk1 的激活和 Greatwall 对 PP2A:B55 的失活独立地促成了这种滞后开关系统。然而,消除 Cdk1 和 PP2A:B55 的失活完全消除了双稳态,这表明滞后是 Cdk1 和 PP2A:B55 反馈环之间相互抑制的一个涌现性质。我们的两个相互关联的反馈系统模型预测了一个介于有丝分裂期和 M 期之间的中间但隐藏的稳定状态。这可以通过在有丝分裂进入时抑制 Cdk1 来在实验中验证,支持了我们模型的预测价值。此外,我们证明了双重抑制 Wee1 和 Gwl 激酶会导致细胞周期记忆的丧失和合成致死性,这可以进一步在治疗上加以利用。