Suppr超能文献

在巨大囊泡中重建的可调谐膜电位以纳米摩尔浓度促进阳离子肽的渗透。

Tunable Membrane Potential Reconstituted in Giant Vesicles Promotes Permeation of Cationic Peptides at Nanomolar Concentrations.

机构信息

Department of Biosystems Science and Engineering , ETH Zürich , Mattenstrasse 26 , 4058 Basel , Switzerland.

Department of Chemistry , University of Zürich , Winterthurerstrasse 190 , 8057 Zürich , Switzerland.

出版信息

ACS Appl Mater Interfaces. 2018 Dec 12;10(49):41909-41916. doi: 10.1021/acsami.8b12217. Epub 2018 Dec 3.

Abstract

We investigate the influence of membrane potential on the permeation of cationic peptides. Therefore, we employ a microfluidic chip capable of capturing giant unilamellar vesicles (GUVs) in physical traps and fast exchange of chemical compounds. Control experiments with calcein proved that the vesicle membranes' integrity is not affected by the physical traps and applied shear forces. Combined with fluorescence correlation spectroscopy, permeation of fluorescently labeled peptides across vesicle membranes can be measured down to the nanomolar level. With the addition of a lipophilic ruthenium(II) complex Ru(C17), GUVs consisting of mixed acyl phospholipids are prepared with a negative membrane potential, resembling the membrane asymmetry in cells. The membrane potential serves as a driving force for the permeation of cationic cell-penetrating peptides (CPPs) nonaarginine (Arg9) and the human immunodeficiency virus trans-activator of transcription (TAT) peptide already at nanomolar doses. Hyperpolarization of the membrane by photo-oxidation of Ru(C17) enhances permeation significantly from 55 to 78% for Arg9. This specific enhancement for Arg9 (cf. TAT) is ascribed to the higher affinity of the arginines to the phosphoserine head groups. On the other hand, permeation is decreased by introducing an additional negative charge in close proximity to the N-terminal arginine residue when changing the fluorophore. In short, with the capability to reconstitute membrane potential as well as shear stress, our system is a suitable platform for modeling the membrane permeability of pharmaceutics candidates. The results also highlight the membrane potential as a major cause of discrepancies between vesicular and cellular studies on CPP permeation.

摘要

我们研究了膜电位对阳离子肽渗透的影响。因此,我们采用了一种微流控芯片,该芯片能够在物理陷阱中捕获巨大的单层囊泡(GUV),并实现化合物的快速交换。用钙黄绿素进行的对照实验证明,囊泡膜的完整性不受物理陷阱和施加的剪切力的影响。与荧光相关光谱法相结合,可以测量荧光标记肽穿过囊泡膜的渗透,达到纳摩尔水平。通过添加亲脂性钌(II)配合物 Ru(C17),可以制备由混合酰基磷脂组成的具有负膜电位的 GUV,类似于细胞中的膜不对称性。膜电位作为阳离子细胞穿透肽(CPP)非精氨酸(Arg9)和人类免疫缺陷病毒转录激活剂(TAT)肽渗透的驱动力,即使在纳摩尔剂量下也能发挥作用。通过 Ru(C17)的光氧化使膜超极化,可将 Arg9 的渗透显著增强 55%至 78%。与 TAT 相比,Arg9 的这种特异性增强归因于精氨酸与磷酸丝氨酸头基的更高亲和力。另一方面,当改变荧光团时,在靠近 N 端精氨酸残基附近引入额外的负电荷会降低渗透。总之,我们的系统具有重建膜电位和剪切应力的能力,是模拟候选药物膜通透性的合适平台。研究结果还强调了膜电位是 CPP 渗透的囊泡和细胞研究之间差异的主要原因之一。

相似文献

1
Tunable Membrane Potential Reconstituted in Giant Vesicles Promotes Permeation of Cationic Peptides at Nanomolar Concentrations.
ACS Appl Mater Interfaces. 2018 Dec 12;10(49):41909-41916. doi: 10.1021/acsami.8b12217. Epub 2018 Dec 3.
2
Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide.
Biochim Biophys Acta. 2014 Jan;1840(1):507-15. doi: 10.1016/j.bbagen.2013.10.011. Epub 2013 Oct 14.
3
Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles.
Chem Phys Lipids. 2018 May;212:120-129. doi: 10.1016/j.chemphyslip.2018.02.001. Epub 2018 Feb 6.
6
Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles.
Biochemistry. 2020 May 12;59(18):1780-1790. doi: 10.1021/acs.biochem.0c00102. Epub 2020 Apr 20.
7
Cell-penetrating HIV1 TAT peptides can generate pores in model membranes.
Biophys J. 2010 Jul 7;99(1):153-62. doi: 10.1016/j.bpj.2010.03.065.
8
Role of Membrane Potential on Entry of Cell-Penetrating Peptide Transportan 10 into Single Vesicles.
Biophys J. 2020 Jan 7;118(1):57-69. doi: 10.1016/j.bpj.2019.11.012. Epub 2019 Nov 20.
9
Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
Biochemistry. 2016 Aug 2;55(30):4154-65. doi: 10.1021/acs.biochem.6b00189. Epub 2016 Jul 22.
10
Fluorescence Monitoring of Peptide Transport Pathways into Large and Giant Vesicles by Supramolecular Host-Dye Reporter Pairs.
J Am Chem Soc. 2019 Dec 26;141(51):20137-20145. doi: 10.1021/jacs.9b09563. Epub 2019 Dec 2.

引用本文的文献

1
The Role of Flexibility in the Bioactivity of Short α-Helical Antimicrobial Peptides.
Antibiotics (Basel). 2025 Apr 22;14(5):422. doi: 10.3390/antibiotics14050422.
3
Tilted State Population of Antimicrobial Peptide PGLa Is Coupled to the Transmembrane Potential.
J Chem Inf Model. 2022 Oct 24;62(20):4963-4969. doi: 10.1021/acs.jcim.2c00667. Epub 2022 Oct 3.
4
Permeation Studies across Symmetric and Asymmetric Membranes in Microdroplet Arrays.
Anal Chem. 2021 Mar 30;93(12):5137-5144. doi: 10.1021/acs.analchem.0c04939. Epub 2021 Mar 15.
6
In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides.
Int J Mol Sci. 2020 Jul 2;21(13):4719. doi: 10.3390/ijms21134719.
7
Action of antimicrobial peptides and cell-penetrating peptides on membrane potential revealed by the single GUV method.
Biophys Rev. 2020 Apr;12(2):339-348. doi: 10.1007/s12551-020-00662-z. Epub 2020 Mar 9.
8
"Basicles": Microbial Growth and Production Monitoring in Giant Lipid Vesicles.
ACS Appl Mater Interfaces. 2019 Sep 25;11(38):34698-34706. doi: 10.1021/acsami.9b12169. Epub 2019 Sep 10.

本文引用的文献

1
Influence of the Membrane Dye R18 and of DMSO on Cell Penetration of Guanidinium-Rich Peptides.
Chem Biodivers. 2018 Oct;15(10):e1800302. doi: 10.1002/cbdv.201800302. Epub 2018 Sep 21.
2
The Effects of Shear Force Transmission Across Vesicle Membranes.
J Phys Chem Lett. 2017 Dec 21;8(24):6128-6134. doi: 10.1021/acs.jpclett.7b02676. Epub 2017 Dec 8.
3
Peptide-Mediated Membrane Transport of Macromolecular Cargo Driven by Membrane Asymmetry.
Anal Chem. 2017 Nov 21;89(22):12369-12374. doi: 10.1021/acs.analchem.7b03421. Epub 2017 Nov 9.
4
Cell-Penetrating Peptides: From Basic Research to Clinics.
Trends Pharmacol Sci. 2017 Apr;38(4):406-424. doi: 10.1016/j.tips.2017.01.003. Epub 2017 Feb 14.
5
The photophysics of photoredox catalysis: a roadmap for catalyst design.
Chem Soc Rev. 2016 Oct 24;45(21):5803-5820. doi: 10.1039/c6cs00526h.
6
Membranes under shear stress: visualization of non-equilibrium domain patterns and domain fusion in a microfluidic device.
Soft Matter. 2016 Jun 21;12(23):5072-6. doi: 10.1039/c6sm00049e. Epub 2016 May 31.
7
Octanol-assisted liposome assembly on chip.
Nat Commun. 2016 Jan 22;7:10447. doi: 10.1038/ncomms10447.
8
Physicochemical Profiling of Surfactant-Induced Membrane Dynamics in a Cell-Sized Liposome.
J Phys Chem Lett. 2012 Feb 2;3(3):430-5. doi: 10.1021/jz2016044. Epub 2012 Jan 20.
9
Cell-penetrating peptides: design, synthesis, and applications.
ACS Nano. 2014 Mar 25;8(3):1972-94. doi: 10.1021/nn4057269. Epub 2014 Feb 28.
10
Microfluidic trapping of giant unilamellar vesicles to study transport through a membrane pore.
Biomicrofluidics. 2013 Jul 26;7(4):44105. doi: 10.1063/1.4816712. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验