Suppr超能文献

剪切力跨囊泡膜传递的影响

The Effects of Shear Force Transmission Across Vesicle Membranes.

作者信息

Sebastian Bernhard, Favero Tobias, Dittrich Petra S

机构信息

Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, 4058 Basel, Switzerland.

出版信息

J Phys Chem Lett. 2017 Dec 21;8(24):6128-6134. doi: 10.1021/acs.jpclett.7b02676. Epub 2017 Dec 8.

Abstract

We report a comprehensive study on mechanotransmission of shear forces across lipid bilayer membranes of giant unilamellar vesicles (GUVs). GUVs containing fluorescent tracer particles were immobilized on a microfluidic platform and exposed to shear flows. A method was developed for the visualization of three-dimensional flows at high precision by defocusing microscopy. We quantify the symmetry of external flow around the GUV and show its effects on vortex flows and luminal dynamics. With increasing asymmetry, luminal vortices merged while liquid exchange in between them increased. The effect of membrane composition was studied through addition of cholesterol. Mechanotransmission efficacy, quantified by the ratio of luminal flow to external flow, ranged from ε = 0.094 (0 mol % cholesterol) to ε = 0.043 (16 mol % cholesterol). Our findings give new cues to the mechanisms underlying the sensing of strength and spatial distribution of shear forces by cells and the impact of membrane composition.

摘要

我们报告了一项关于剪切力通过巨型单层囊泡(GUVs)脂质双分子层膜进行机械传递的全面研究。含有荧光示踪颗粒的GUVs被固定在微流控平台上,并暴露于剪切流中。通过散焦显微镜开发了一种用于高精度可视化三维流的方法。我们量化了GUV周围外部流的对称性,并展示了其对涡旋流和腔内动力学的影响。随着不对称性增加,腔内涡旋合并,同时它们之间的液体交换增加。通过添加胆固醇研究了膜组成的影响。通过腔内流与外部流的比率量化的机械传递效率范围为ε = 0.094(0摩尔%胆固醇)至ε = 0.043(16摩尔%胆固醇)。我们的发现为细胞感知剪切力的强度和空间分布的机制以及膜组成的影响提供了新线索。

相似文献

1
The Effects of Shear Force Transmission Across Vesicle Membranes.
J Phys Chem Lett. 2017 Dec 21;8(24):6128-6134. doi: 10.1021/acs.jpclett.7b02676. Epub 2017 Dec 8.
3
Dynamics of asymmetric membranes and interleaflet coupling as intermediates in membrane fusion.
Biophys J. 2023 Jun 6;122(11):1985-1995. doi: 10.1016/j.bpj.2022.10.006. Epub 2022 Oct 5.
5
Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation.
Cell Biochem Biophys. 2020 Jun;78(2):157-164. doi: 10.1007/s12013-020-00910-9. Epub 2020 Apr 21.
6
Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles.
Biochim Biophys Acta. 2010 Sep;1798(9):1625-31. doi: 10.1016/j.bbamem.2010.05.011. Epub 2010 May 19.
7
Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.
Chem Phys Lipids. 2014 Jul;181:99-120. doi: 10.1016/j.chemphyslip.2014.02.009. Epub 2014 Mar 13.
8
Shear stress induced lipid order and permeability changes of giant unilamellar vesicles.
Biochim Biophys Acta Gen Subj. 2022 Oct;1866(10):130199. doi: 10.1016/j.bbagen.2022.130199. Epub 2022 Jun 30.
9
Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids.
Biochim Biophys Acta Biomembr. 2023 Mar;1865(3):184112. doi: 10.1016/j.bbamem.2022.184112. Epub 2022 Dec 22.

引用本文的文献

1
Endothelial cells differentially sense laminar and disturbed flows by altering the lipid order of their plasma and mitochondrial membranes.
Am J Physiol Cell Physiol. 2023 Dec 1;325(6):C1532-C1544. doi: 10.1152/ajpcell.00393.2023. Epub 2023 Nov 6.
2
Perfusion Chamber for Observing a Liposome-Based Cell Model Prepared by a Water-in-Oil Emulsion Transfer Method.
ACS Omega. 2020 Jul 30;5(31):19429-19436. doi: 10.1021/acsomega.0c01371. eCollection 2020 Aug 11.
3
Tunable Membrane Potential Reconstituted in Giant Vesicles Promotes Permeation of Cationic Peptides at Nanomolar Concentrations.
ACS Appl Mater Interfaces. 2018 Dec 12;10(49):41909-41916. doi: 10.1021/acsami.8b12217. Epub 2018 Dec 3.

本文引用的文献

2
Profiling of individual human red blood cells under osmotic stress using defocusing microscopy.
J Biomed Opt. 2016 Sep 1;21(9):90505. doi: 10.1117/1.JBO.21.9.090505.
3
Membranes under shear stress: visualization of non-equilibrium domain patterns and domain fusion in a microfluidic device.
Soft Matter. 2016 Jun 21;12(23):5072-6. doi: 10.1039/c6sm00049e. Epub 2016 May 31.
4
Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.
Am J Physiol Heart Circ Physiol. 2015 Oct;309(7):H1178-85. doi: 10.1152/ajpheart.00241.2015. Epub 2015 Aug 21.
5
Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting.
Adv Colloid Interface Sci. 2014 Jun;208:161-76. doi: 10.1016/j.cis.2014.03.002. Epub 2014 Mar 12.
7
Membrane viscosity determined from shear-driven flow in giant vesicles.
Phys Rev Lett. 2013 Jul 19;111(3):038103. doi: 10.1103/PhysRevLett.111.038103. Epub 2013 Jul 17.
8
Endothelial cell sensing of flow direction.
Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2130-6. doi: 10.1161/ATVBAHA.113.301826. Epub 2013 Jun 27.
9
Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases.
J Cell Sci. 2013 Mar 1;126(Pt 5):1227-34. doi: 10.1242/jcs.119628. Epub 2013 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验