Suppr超能文献

Calculation of the three-dimensional structure of Saccharomyces cerevisiae cytochrome b inserted in a lipid matrix.

作者信息

Brasseur R

机构信息

Laboratoire Chimie-Physique des Macromolecules aux Interfaces, Université Libre de Bruxelles, Belgium.

出版信息

J Biol Chem. 1988 Sep 5;263(25):12571-5.

PMID:3045121
Abstract

Cytochrome b is an integral membrane protein, which forms the core of the ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex. A computer-aided three-dimensional modeling procedure was carried out in four steps. First, the candidate hydrophobic helices were searched for throughout the protein primary sequence by a computer procedure based upon the method of Eisenberg; second, a secondary helical structure was imposed to the transmembrane peptides; third, the helical segments at a lipid-water interface were oriented, and finally the possible interactions between helices with similar properties were investigated. This procedure enabled the identification of nine hydrophobic segments, of which eight are membrane-spanning helices while one has amphipathic properties. Three hydrophilic receptor-binding domains were also identified. Based upon their hydrophobicity profiles, the transmembrane helices could be associated in pairs inside the lipid bilayer. In our folding model proposed for cytochrome b, all mutation sites are not only located on the same side of the membrane but are also in close proximity in the three-dimensional structure. Inhibitor resistance mutational sites which were recently characterized (di Rago, J.-P., and Colson, A.-M. (1988) J. Biol. Chem. 263, 12564-12570) have been located on this model. Moreover, the receptor-binding domains and the mutation sites are close neighbors in the three-dimensional spatial representation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验