Guan Wenyue, Venkatasubramanian Lalanti, Baek Myungin, Mann Richard S, Enriquez Jonathan
Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS.
Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University.
J Vis Exp. 2018 Oct 30(140). doi: 10.3791/58365.
The majority of work on the neuronal specification has been carried out in genetically and physiologically tractable models such as C. elegans, Drosophila larvae, and fish, which all engage in undulatory movements (like crawling or swimming) as their primary mode of locomotion. However, a more sophisticated understanding of the individual motor neuron (MN) specification-at least in terms of informing disease therapies-demands an equally tractable system that better models the complex appendage-based locomotion schemes of vertebrates. The adult Drosophila locomotor system in charge of walking meets all of these criteria with ease, since in this model it is possible to study the specification of a small number of easily distinguished leg MNs (approximately 50 MNs per leg) both using a vast array of powerful genetic tools, and in the physiological context of an appendage-based locomotion scheme. Here we describe a protocol to visualize the leg muscle innervation in an adult fly.
大多数关于神经元特化的研究是在基因和生理上易于处理的模型中进行的,如秀丽隐杆线虫、果蝇幼虫和鱼类,它们都以波动运动(如爬行或游泳)作为主要运动方式。然而,要更深入地理解单个运动神经元(MN)的特化——至少在为疾病治疗提供信息方面——需要一个同样易于处理的系统,该系统能更好地模拟脊椎动物基于附肢的复杂运动模式。负责行走的成年果蝇运动系统轻松满足了所有这些标准,因为在这个模型中,既可以使用大量强大的遗传工具,又能在基于附肢的运动模式的生理背景下,研究少数易于区分的腿部运动神经元(每条腿约50个运动神经元)的特化。在这里,我们描述了一种在成年果蝇中可视化腿部肌肉神经支配的方法。