Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.
Med Phys. 2019 Feb;46(2):789-799. doi: 10.1002/mp.13298. Epub 2018 Dec 17.
The purpose of this study was to demonstrate the feasibility of using a custom gradient sequence on an unmodified 3T magnetic resonance imaging (MRI) scanner to perform magnetic resonance navigation (MRN) by investigating the blood flow control method in vivo, reproducing the obtained rheology in a phantom mimicking porcine hepatic arterial anatomy, injecting magnetized microbead aggregates through an implantable catheter, and steering the aggregates across arterial bifurcations for selective tumor embolization.
In the first phase, arterial hepatic velocity was measured using cine phase-contrast imaging in seven pigs under free-flow conditions and controlled-flow conditions, whereby a balloon catheter is used to occlude arterial flow and saline is injected at different rates. Three of the seven pigs previously underwent selective lobe embolization to simulate a chemoembolization procedure. In the second phase, the measured in vivo controlled-flow velocities were approximately reproduced in a Y-shaped vascular bifurcation phantom by injecting saline at an average rate of 0.6 mL/s with a pulsatile component. Aggregates of 200-μm magnetized particles were steered toward the right or left hepatic branch using a 20-mT/m MRN gradient. The phantom was oriented at 0°, 45°, and 90° with respect to the B magnetic field. The steering differences between left-right gradient and baseline were calculated using Fisher's exact test. A theoretical model of the trajectory of the aggregate within the main phantom branch taking into account gravity, magnetic force, and hydrodynamic drag was also designed, solved, and validated against the experimental results to characterize the physical limitations of the method.
At an injection rate of 0.5 mL/s, the average flow velocity decreased from 20 ± 15 to 8.4 ± 5.0 cm/s after occlusion in nonembolized pigs and from 13.6 ± 2.0 to 5.4 ± 3.0 cm/s in previously embolized pigs. The pulsatility index measured to be 1.7 ± 1.8 and 1.1 ± 0.1 for nonembolized and embolized pigs, respectively, decreased to 0.6 ± 0.4 and 0.7 ± 0.3 after occlusion. For MRN performed at each orientation, the left-right distribution of aggregates was 55%, 25%, and 75% on baseline and 100%, 100%, and 100% (P < 0.001, P = 0.003, P = 0.003) after the application of MRN, respectively. According to the theoretical model, the aggregate reaches a stable transverse position located toward the direction of the gradient at a distance equal to 5.8% of the radius away from the centerline within 0.11 s, at which point the aggregate will have transited through a longitudinal distance of 1.0 mm from its release position.
In this study, we showed that the use of a balloon catheter reduces arterial hepatic flow magnitude and variation with the aim to reduce steering failures caused by fast blood flow rates and low magnetic steering forces. A mathematical model confirmed that the reduced flow rate is low enough to maximize steering ratio. After reproducing the flow rate in a vascular bifurcation phantom, we demonstrated the feasibility of MRN after injection of microparticle aggregates through a dedicated injector. This work is an important step leading to MRN-based selective embolization techniques in humans.
本研究旨在展示在未经改装的 3T 磁共振成像(MRI)扫描仪上使用定制梯度序列进行磁共振导航(MRN)的可行性,方法是通过研究体内血流控制方法、在模拟猪肝动脉解剖结构的体模中再现获得的流变学、通过植入式导管注射磁化微球聚集体,并在动脉分叉处引导聚集体以实现选择性肿瘤栓塞,来验证该方法的可行性。
在第一阶段,在七只猪的自由流动条件和控制流动条件下使用电影相位对比成像测量肝动脉速度,其中使用球囊导管闭塞动脉血流并以不同的速度注射生理盐水。其中三只猪先前进行了选择性叶栓塞以模拟化学栓塞程序。在第二阶段,通过以平均 0.6mL/s 的速度在 Y 形血管分叉体模中注射生理盐水并施加脉动成分,使测量的体内受控流动速度近似重现。使用 20mT/m 的 MRN 梯度将 200-μm 磁铁颗粒聚集体引导至左或右肝分支。体模相对于 B 磁场以 0°、45°和 90°定位。使用 Fisher 确切检验计算左右梯度和基线之间的转向差异。还设计了一个考虑重力、磁场力和流体动力阻力的聚集体在主体模分支内轨迹的理论模型,并对其进行了解析和验证,以表征该方法的物理限制。
在注射速度为 0.5mL/s 时,在未栓塞的猪中,闭塞后平均流速从 20±15cm/s 降低至 8.4±5.0cm/s,在先前栓塞的猪中从 13.6±2.0cm/s 降低至 5.4±3.0cm/s。测量的脉动指数分别为未栓塞和栓塞猪的 1.7±1.8 和 1.1±0.1,闭塞后降低至 0.6±0.4 和 0.7±0.3。对于在每个方向上进行的 MRN,在基线时聚集体的左右分布为 55%、25%和 75%,而在施加 MRN 后分别为 100%、100%和 100%(P<0.001,P=0.003,P=0.003)。根据理论模型,聚集体在 0.11s 内达到稳定的横向位置,位于梯度方向上,距离中心线 5.8%的距离,此时聚集体将从释放位置横向移动 1.0mm。
在这项研究中,我们表明使用球囊导管降低了肝动脉血流的幅度和变化,目的是降低由于血流速度快和磁场转向力低而导致的转向失败。一个数学模型证实,降低的流速足够低,可以最大限度地提高转向比。在血管分叉体模中再现流量后,我们证明了通过专用注射器注射微颗粒聚集体后进行 MRN 的可行性。这项工作是迈向基于磁共振导航的人体选择性栓塞技术的重要一步。