Suppr超能文献

研究聚类检测方法中所使用区域数量的影响:以加拿大曼尼托巴省一家医院的儿童哮喘就诊情况为例

Examining the impact of the number of regions used in cluster detection methods: An application to childhood asthma visits to a hospital in Manitoba, Canada.

作者信息

Torabi Mahmoud, Galloway Katie

机构信息

Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba.

出版信息

Geospat Health. 2018 Nov 9;13(2). doi: 10.4081/gh.2018.696.

Abstract

The level of spatial aggregation is a major concern in cluster investigations. Combining regions to protect privacy may result in a loss of power and thus, can limit the information researchers can obtain. The impact of spatial aggregation on the ability to detect clusters is examined in this study, which shows the importance of choosing the correct level of spatial aggregation in cluster investigations. We applied the circular spatial scan statistic (CSS), flexible spatial scan statistic (FSS) and Bayesian disease mapping (BYM) approaches to a dataset containing childhood asthma visits to a hospital in Manitoba, Canada, using three different levels of spatial aggregation. Specifically, we used 56, 67 and 220 regions in the analysis, respectively. It is expected that the three scenarios will yield different results and will highlight the importance of using the right level of spatial aggregation. The three methods (CSS, FSS, BYM) examined in this study performed similarly when detecting potential clusters. However, for different levels of spatial aggregation, the potential clusters identified were different. As the number of regions used in the analysis increased, the total area identified in the cluster decreased. In general, potential clusters were identified in the central and northern parts of Manitoba. Overall, it is crucial to identify the appropriate number of regions to study spatial patterns of disease as it directly affects the results and consequently the conclusions. Additional investigation through future work is needed to determine which scenario of spatial aggregation is best.

摘要

空间聚集程度是聚类研究中的一个主要关注点。合并区域以保护隐私可能会导致效能损失,从而限制研究人员能够获取的信息。本研究考察了空间聚集对检测聚类能力的影响,结果表明在聚类研究中选择正确的空间聚集水平非常重要。我们将圆形空间扫描统计量(CSS)、灵活空间扫描统计量(FSS)和贝叶斯疾病映射(BYM)方法应用于包含加拿大曼尼托巴省一家医院儿童哮喘就诊情况的数据集,使用了三种不同的空间聚集水平。具体而言,我们在分析中分别使用了56个、67个和220个区域。预计这三种情况会产生不同的结果,并将突出使用正确空间聚集水平的重要性。本研究中考察的三种方法(CSS、FSS、BYM)在检测潜在聚类时表现相似。然而,对于不同的空间聚集水平,识别出的潜在聚类是不同的。随着分析中使用的区域数量增加,聚类中识别出的总面积减少。总体而言,在曼尼托巴省的中部和北部识别出了潜在聚类。总的来说,确定研究疾病空间模式的合适区域数量至关重要,因为这直接影响结果并进而影响结论。需要通过未来的工作进行进一步调查,以确定哪种空间聚集情况最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验