Department of Statistics, UFOP, Morro do Cruzeiro, Campus Universitário, Ouro Preto, MG, 35400-000, Brazil.
Department of Statistics, UnB, Brasília, DF, Brazil.
Int J Health Geogr. 2018 Feb 17;17(1):5. doi: 10.1186/s12942-018-0124-1.
The spatial scan statistic is widely used by public health professionals in the detection of spatial clusters in inhomogeneous point process. The most popular version of the spatial scan statistic uses a circular-shaped scanning window. Several other variants, using other parametric or non-parametric shapes, are also available. However, none of them offer information about the uncertainty on the borders of the detected clusters.
We propose a new method to evaluate uncertainty on the boundaries of spatial clusters identified through the spatial scan statistic for Poisson data. For each spatial data location i, a function F(i) is calculated. While not a probability, this function takes values in the [0, 1] interval, with a higher value indicating more evidence that the location belongs to the true cluster.
Through a set of simulation studies, we show that the F function provides a way to define, measure and visualize the certainty or uncertainty of each specific location belonging to the true cluster. The method can be applied whether there are one or multiple detected clusters on the map. We illustrate the new method on a data set concerning Chagas disease in Minas Gerais, Brazil.
The higher the intensity given to an area, the higher the plausibility of that particular area to belong to the true cluster in case it exists. This way, the F function provides information from which the public health practitioner can perform a border analysis of the detected spatial scan statistic clusters. We have implemented and illustrated the border analysis F function in the context of the circular spatial scan statistic for spatially aggregated Poisson data. The definition is clearly independent of both the shape of the scanning window and the probability model under which the data is generated. To make the new method widely available to users, it has been implemented in the freely available SaTScan[Formula: see text] software www.satscan.org .
空间扫描统计在公共卫生专业人员检测不均匀点过程中的空间聚类中被广泛应用。最流行的空间扫描统计版本使用圆形扫描窗口。也有其他一些变体,使用其他参数或非参数形状,但它们都没有提供关于检测到的聚类边界的不确定性的信息。
我们提出了一种新的方法来评估泊松数据空间扫描统计识别的空间聚类边界的不确定性。对于每个空间数据位置 i,计算一个函数 F(i)。虽然不是概率,但这个函数的值在[0,1]区间内,值越高表示该位置属于真实聚类的证据越多。
通过一系列模拟研究,我们表明 F 函数提供了一种定义、测量和可视化每个特定位置属于真实聚类的确定性或不确定性的方法。该方法可应用于地图上是否存在一个或多个检测到的聚类。我们在巴西米纳斯吉拉斯州恰加斯病的数据集中说明了新方法。
赋予一个区域的强度越高,该区域属于真实聚类的可能性就越高。这样,F 函数提供了公共卫生从业者可以对检测到的空间扫描统计聚类进行边界分析的信息。我们已经在空间聚集泊松数据的圆形空间扫描统计的背景下实现并说明了边界分析 F 函数。该定义明显独立于扫描窗口的形状和数据生成的概率模型。为了使新方法广泛应用于用户,我们已经在免费的 SaTScan[公式:见文本]软件 www.satscan.org 中实现了它。