Department of Biological Sciences & Bioengineering , Indian Institute of Technology Kanpur (IIT Kanpur) , Kanpur , Uttar Pradesh , India 208016.
ACS Chem Neurosci. 2019 Mar 20;10(3):1603-1614. doi: 10.1021/acschemneuro.8b00545. Epub 2018 Dec 3.
Detailed study of the molecular mechanism behind the pathogenesis of Huntington's disease (HD) suggests that polyglutamine aggregation is one of the fundamental reasons for HD. Despite the discovery of many potential molecules, HD therapy is still limited to symptomatic relief. Among these molecules, few mechanism based peptide inhibitors of polyglutamine aggregation (QBP1, NT and PGQP) have shown promising activity; however, poor blood-brain barrier (BBB) penetration, low bioavailability, and low half-life may hinder their therapeutic potential. Hence, to deliver them to the brain for assessing their efficacy, we have designed and synthesized peptide loaded poly-d,l-lactide- co-glycolide (PLGA) nanoparticles of less than 200 nm in size by carbodiimide chemistry and nanoprecipitation protocols. For brain delivery, PLGA nanoparticles were coated with polysorbate 80 which aids receptor mediated internalization. Using the in vitro BBB model of Madin-Darby canine kidney cells and healthy mice, the translocation of polysorbate 80 coated fluorescent nanoparticles was confirmed. Moreover, QBP1, NT, and PGQP loaded PLGA nanoparticles showed dose dependent inhibition of polyglutamine aggregation in cell models of HD (Neuro 2A and PC12 cells) and improved motor performance in Drosophila model of HD. Additionally, no toxicity in cells and animals confirmed biocompatibility of the nanoparticulate formulations. Based on this work, future studies can be designed in higher animal models to test peptide loaded nanoparticles in HD and other polyglutamine expansion related diseases.
详细研究亨廷顿病 (HD) 发病机制背后的分子机制表明,多聚谷氨酰胺聚集是 HD 的根本原因之一。尽管发现了许多潜在的分子,但 HD 治疗仍然局限于症状缓解。在这些分子中,几种聚谷氨酰胺聚集的基于机制的肽抑制剂 (QBP1、NT 和 PGQP) 显示出有希望的活性;然而,较差的血脑屏障 (BBB) 穿透性、低生物利用度和半衰期短可能会阻碍它们的治疗潜力。因此,为了将它们递送到大脑中评估它们的疗效,我们通过碳二亚胺化学和纳米沉淀方案设计并合成了载肽的聚(D,L-丙交酯-共-乙交酯)(PLGA)纳米粒,其粒径小于 200nm。为了脑内递送,用聚山梨醇酯 80 对 PLGA 纳米粒进行涂层处理,以帮助受体介导的内化。使用 Madin-Darby 犬肾细胞和健康小鼠的体外 BBB 模型,证实了聚山梨醇酯 80 涂层荧光纳米粒的转位。此外,QBP1、NT 和 PGQP 负载的 PLGA 纳米粒在 HD 的细胞模型(Neuro 2A 和 PC12 细胞)中显示出剂量依赖性的抑制多聚谷氨酰胺聚集的作用,并改善了 HD 果蝇模型的运动性能。此外,细胞和动物中没有毒性证实了纳米粒制剂的生物相容性。基于这项工作,未来的研究可以在更高的动物模型中设计,以测试载肽纳米粒在 HD 和其他聚谷氨酰胺扩展相关疾病中的应用。