Centre for Advanced Materials, Indian Association for the Cultivation of Science , Kolkata-700032, India.
Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre , Manesar, Gurgaon-122051, India.
ACS Appl Mater Interfaces. 2017 Jul 19;9(28):24126-24139. doi: 10.1021/acsami.7b06510. Epub 2017 Jul 3.
Prevention and therapeutic strategies for various neurodegenerative diseases focus on inhibiting protein fibrillation, clearing aggregated protein plaques from the brain, and lowering protein-aggregate-induced toxicity. We have designed poly(trehalose) nanoparticles that can inhibit amyloid/polyglutamine aggregation under extra-/intracellular conditions, reduce such aggregation-derived cytotoxicity, and prevent polyglutamine aggregation in a Huntington's disease (HD) model mouse brain. The nanoparticles have a hydrodynamic size of 20-30 nm and are composed of a 6 nm iron oxide core and a zwitterionic polymer shell containing ∼5-12 wt % covalently linked trehalose. The designed poly(trehalose) nanoparticles are 1000-10000 times more efficient than molecular trehalose in inhibiting protein fibrillation in extra-cellular space, in blocking aggregation of polyglutamine-containing mutant huntingtin protein in model neuronal cells, and in suppressing mutant huntingtin aggregates in HD mouse brain. We show that the nanoparticle form of trehalose with zwitterionic surface charge and a trehalose multivalency (i.e., number of trehalose molecules per nanoparticle) of ∼80-200 are crucial for efficient brain targeting, entry into neuronal cells, and suppression of mutant huntingtin aggregation. The present work shows that nanoscale trehalose can offer highly efficient antiamyloidogenic performance at micromolar concentration, compared with millimollar to molar concentrations for molecular trehalose. This approach can be extended to in vivo application to combat protein-aggregation-derived neurodegenerative diseases.
各种神经退行性疾病的预防和治疗策略侧重于抑制蛋白质聚集,清除大脑中的聚集蛋白斑块,并降低蛋白质聚集诱导的毒性。我们设计了聚海藻糖纳米粒子,可在细胞内外条件下抑制淀粉样蛋白/聚谷氨酰胺聚集,降低聚集衍生的细胞毒性,并预防亨廷顿病(HD)模型鼠脑内的聚谷氨酰胺聚集。纳米粒子的水动力直径为 20-30nm,由 6nm 的氧化铁核和带内盐性聚合物壳组成,其中含有约 5-12wt%共价连接的海藻糖。与分子海藻糖相比,设计的聚海藻糖纳米粒子在抑制细胞外空间蛋白质聚集、阻断模型神经元细胞中含有聚谷氨酰胺的突变亨廷顿蛋白聚集以及抑制 HD 鼠脑内突变亨廷顿蛋白聚集方面的效率要高 1000-10000 倍。我们表明,带内盐性表面电荷的海藻糖纳米粒子形式和海藻糖的多价性(即每个纳米粒子上的海藻糖分子数)约为 80-200,对于有效的脑靶向、进入神经元细胞和抑制突变亨廷顿蛋白聚集至关重要。本研究表明,与分子海藻糖的毫摩尔至摩尔浓度相比,纳米尺度的海藻糖在微摩尔浓度下就能提供高效的抗淀粉样变性性能。该方法可扩展到体内应用,以对抗蛋白质聚集诱导的神经退行性疾病。