Suppr超能文献

使用贝叶斯框架评估动态 PET 运动校正后心肌血流的可靠性。

Assessing Reliability of Myocardial Blood Flow After Motion Correction With Dynamic PET Using a Bayesian Framework.

出版信息

IEEE Trans Med Imaging. 2019 May;38(5):1216-1226. doi: 10.1109/TMI.2018.2881992. Epub 2018 Nov 19.

Abstract

The estimation of myocardial blood flow (MBF) in dynamic PET can be biased by many different processes. A major source of error, particularly in clinical applications, is patient motion. Patient motion, or gross motion, creates displacements between different PET frames as well as between the PET frames and the CT-derived attenuation map, leading to errors in MBF calculation from voxel time series. Motion correction techniques are challenging to evaluate quantitatively and the impact on MBF reliability is not fully understood. Most metrics, such as signal-to-noise ratio (SNR), are characteristic of static images, and are not specific to motion correction in dynamic data. This study presents a new approach of estimating motion correction quality in dynamic cardiac PET imaging. It relies on calculating a MBF surrogate, K , along with the uncertainty on the parameter. This technique exploits a Bayesian framework, representing the kinetic parameters as a probability distribution, from which the uncertainty measures can be extracted. If the uncertainty extracted is high, the parameter studied is considered to have high variability - or low confidence - and vice versa. The robustness of the framework is evaluated on simulated time activity curves to ensure that the uncertainties are consistently estimated at the multiple levels of noise. Our framework is applied on 40 patient datasets, divided in 4 motion magnitude categories. Experienced observers manually realigned clinical datasets with 3D translations to correct for motion. K uncertainties were compared before and after correction. A reduction of uncertainty after motion correction of up to 60% demonstrates the benefit of motion correction in dynamic PET and as well as provides evidence of the usefulness of the new method presented.

摘要

动态 PET 中的心肌血流 (MBF) 估计会受到许多不同过程的影响。一个主要的误差源,特别是在临床应用中,是患者运动。患者运动或大运动在不同的 PET 帧之间以及 PET 帧和 CT 衍生的衰减图之间产生位移,导致从体素时间序列计算 MBF 时出现误差。运动校正技术难以进行定量评估,其对 MBF 可靠性的影响尚不完全清楚。大多数指标,如信噪比 (SNR),都是静态图像的特征,与动态数据中的运动校正并不特定相关。本研究提出了一种评估动态心脏 PET 成像中运动校正质量的新方法。它依赖于计算 MBF 替代物 K 以及参数的不确定性。该技术利用贝叶斯框架,将动力学参数表示为概率分布,从中可以提取不确定性度量。如果提取的不确定性较高,则认为所研究的参数具有较高的可变性 - 或较低的置信度 - 反之亦然。该框架在模拟时间活动曲线上进行了评估,以确保在多个噪声水平上始终如一地估计不确定性。我们的框架应用于 40 个患者数据集,分为 4 个运动幅度类别。有经验的观察者使用 3D 平移手动重新排列临床数据集以纠正运动。比较了校正前后的 K 不确定性。运动校正后不确定性的降低高达 60%,这表明了运动校正在动态 PET 中的益处,并且为所提出的新方法的有用性提供了证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验