IEEE Trans Image Process. 2019 May;28(5):2126-2139. doi: 10.1109/TIP.2018.2882156. Epub 2018 Nov 19.
Recent studies have shown the effectiveness of using depth information in salient object detection. However, the most commonly seen images so far are still RGB images that do not contain the depth data. Meanwhile, the human brain can extract the geometric model of a scene from an RGB-only image and hence provides a 3D perception of the scene. Inspired by this observation, we propose a new concept named RGB-'D' saliency detection, which derives pseudo depth from the RGB images and then performs 3D saliency detection. The pseudo depth can be utilized as image features, prior knowledge, an additional image channel, or independent depth-induced models to boost the performance of traditional RGB saliency models. As an illustration, we develop a new salient object detection algorithm that uses the pseudo depth to derive a depth-driven background prior and a depth contrast feature. Extensive experiments on several standard databases validate the promising performance of the proposed algorithm. In addition, we also adapt two supervised RGB saliency models to our RGB-'D' saliency framework for performance enhancement. The results further demonstrate the generalization ability of the proposed RGB-'D' saliency framework.
最近的研究表明,在显著目标检测中使用深度信息是有效的。然而,迄今为止最常见的图像仍然是不包含深度数据的 RGB 图像。同时,人类大脑可以从仅包含 RGB 的图像中提取场景的几何模型,从而提供对场景的 3D 感知。受此观察的启发,我们提出了一个新的概念,称为 RGB-'D' 显著性检测,它从 RGB 图像中推导出伪深度,然后进行 3D 显著性检测。伪深度可以用作图像特征、先验知识、附加的图像通道或独立的深度诱导模型,以提高传统 RGB 显著性模型的性能。作为说明,我们开发了一种新的显著目标检测算法,该算法使用伪深度来推导出深度驱动的背景先验和深度对比度特征。在几个标准数据库上的广泛实验验证了所提出算法的有前途的性能。此外,我们还将两个监督的 RGB 显著性模型适配到我们的 RGB-'D' 显著性框架中,以提高性能。结果进一步证明了所提出的 RGB-'D' 显著性框架的泛化能力。