Suppr超能文献

ASIF-Net:用于 RGB-D 显著目标检测的注意力导向交织融合网络。

ASIF-Net: Attention Steered Interweave Fusion Network for RGB-D Salient Object Detection.

出版信息

IEEE Trans Cybern. 2021 Jan;51(1):88-100. doi: 10.1109/TCYB.2020.2969255. Epub 2020 Dec 22.

Abstract

Salient object detection from RGB-D images is an important yet challenging vision task, which aims at detecting the most distinctive objects in a scene by combining color information and depth constraints. Unlike prior fusion manners, we propose an attention steered interweave fusion network (ASIF-Net) to detect salient objects, which progressively integrates cross-modal and cross-level complementarity from the RGB image and corresponding depth map via steering of an attention mechanism. Specifically, the complementary features from RGB-D images are jointly extracted and hierarchically fused in a dense and interweaved manner. Such a manner breaks down the barriers of inconsistency existing in the cross-modal data and also sufficiently captures the complementarity. Meanwhile, an attention mechanism is introduced to locate the potential salient regions in an attention-weighted fashion, which advances in highlighting the salient objects and suppressing the cluttered background regions. Instead of focusing only on pixelwise saliency, we also ensure that the detected salient objects have the objectness characteristics (e.g., complete structure and sharp boundary) by incorporating the adversarial learning that provides a global semantic constraint for RGB-D salient object detection. Quantitative and qualitative experiments demonstrate that the proposed method performs favorably against 17 state-of-the-art saliency detectors on four publicly available RGB-D salient object detection datasets. The code and results of our method are available at https://github.com/Li-Chongyi/ASIF-Net.

摘要

从 RGB-D 图像中进行显著目标检测是一项重要但具有挑战性的视觉任务,旨在通过结合颜色信息和深度约束来检测场景中最具特色的对象。与之前的融合方式不同,我们提出了一种注意力引导交织融合网络(ASIF-Net)来检测显著目标,该网络通过注意力机制引导,逐步从 RGB 图像和相应的深度图中整合跨模态和跨层的互补信息。具体来说,互补特征从 RGB-D 图像中以密集和交织的方式共同提取和分层融合。这种方式打破了跨模态数据中存在的不一致性的障碍,并且充分捕获了互补性。同时,引入了一种注意力机制,以注意力加权的方式定位潜在的显著区域,从而突出显著对象并抑制杂乱的背景区域。我们不仅关注像素级的显著度,还通过引入对抗学习来确保检测到的显著对象具有对象特征(例如,完整的结构和清晰的边界),为 RGB-D 显著目标检测提供全局语义约束。定量和定性实验表明,该方法在四个公开的 RGB-D 显著目标检测数据集上优于 17 种最先进的显著度检测器。我们方法的代码和结果可在 https://github.com/Li-Chongyi/ASIF-Net 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验