Suppr超能文献

光电容积脉搏波波形与心率变异性识别低压力状态:注意测试。

Photoplethysmographic Waveform Versus Heart Rate Variability to Identify Low-Stress States: Attention Test.

出版信息

IEEE J Biomed Health Inform. 2019 Sep;23(5):1940-1951. doi: 10.1109/JBHI.2018.2882142. Epub 2018 Nov 19.

Abstract

Our long-term goal is the development of an automatic identifier of attentional states. In order to accomplish it, we should first be able to identify different states based on physiological signals. So, the first aim of this paper is to identify the most appropriate features to detect a subject's high performance state. For that, a database of electrocardiographic (ECG) and photoplethysmographic (PPG) signals is recorded in two unequivocally defined states (rest and attention task) from up to 50 subjects as a sample of the population. Time and frequency parameters of heart/pulse rate variability have been computed from the ECG/PPG signals, respectively. Additionally, the respiratory rate has been estimated from both signals and also six morphological parameters from PPG. In total, 26 features are obtained for each subject. They provide information about the autonomic nervous system and the physiological response of the subject to an attention demand task. Results show an increase of sympathetic activation when the subjects perform the attention test. The amplitude and width of the PPG pulse were more sensitive than the classical sympathetic markers ([Formula: see text] and [Formula: see text]) for identifying this attentional state. State classification accuracy reaches a mean of [Formula: see text], a maximum of [Formula: see text], and a minimum of 85%, in the 100 classifications made by only selecting four parameters extracted from the PPG signal (pulse amplitude, pulsewidth, pulse downward slope, and mean pulse rate). These results suggest that attentional states could be identified by PPG.

摘要

我们的长期目标是开发一种自动识别注意力状态的方法。为了实现这一目标,我们首先应该能够根据生理信号识别不同的状态。因此,本文的首要目标是确定最适合检测个体高绩效状态的特征。为此,我们从多达 50 名被试者的样本中记录了一段明确界定的静息和注意任务状态的心电图(ECG)和光电容积脉搏波(PPG)信号数据库。从 ECG/PPG 信号分别计算了心率/脉搏率变异性的时间和频率参数。此外,还从两个信号估计了呼吸率,并从 PPG 中提取了六个形态参数。对于每个被试者,总共获得了 26 个特征。这些特征提供了有关自主神经系统和被试者对注意需求任务的生理反应的信息。结果表明,当被试者执行注意测试时,交感神经的激活会增加。PPG 脉冲的幅度和宽度比经典的交感神经标记物 ([Formula: see text] 和 [Formula: see text]) 更能敏感地识别这种注意力状态。在进行的 100 次分类中,仅从 PPG 信号中提取的四个参数(脉搏幅度、脉宽、脉搏下降斜率和平均脉搏率)就可以达到 85%的平均分类准确率、[Formula: see text]的最大准确率和 85%的最小准确率。这些结果表明,PPG 可以用于识别注意力状态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验