Suppr超能文献

线粒体功能障碍在长时间不活动期间引起肌肉萎缩:原因和影响综述。

Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects.

机构信息

Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.

Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Physical Education, University of Estadual of Londrina, Londrina, Brazil.

出版信息

Arch Biochem Biophys. 2019 Feb 15;662:49-60. doi: 10.1016/j.abb.2018.11.005. Epub 2018 Nov 16.

Abstract

Prolonged skeletal muscle inactivity (e.g. limb immobilization, bed rest, mechanical ventilation, spinal cord injury, etc.) results in muscle atrophy that manifests into a decreased quality of life and in select patient populations, a higher risk of morbidity and mortality. Thus, understanding the processes that contribute to muscle atrophy during prolonged periods of muscle disuse is an important area of research. In this regard, mitochondrial dysfunction has been directly linked to the muscle wasting that occurs during extended periods of skeletal muscle inactivity. While the concept that mitochondrial dysfunction contributes to disuse muscle atrophy has been contemplated for nearly 50 years, the mechanisms connecting mitochondrial signaling events to skeletal muscle atrophy remained largely unexplained until recently. Indeed, emerging evidence reveals that mitochondrial dysfunction and the associated mitochondrial signaling events are a requirement for several forms of inactivity-induced skeletal muscle atrophy. Specifically, inactivity-induced alterations in skeletal muscle mitochondria phenotype and increased ROS emission, impaired Ca handling, and release of mitochondria-specific proteolytic activators are established occurrences that promote fiber atrophy during prolonged periods of muscle inactivity. This review highlights the evidence that directly connects mitochondrial dysfunction and aberrant mitochondrial signaling with skeletal muscle atrophy and discusses the mechanisms linking these interconnected phenomena.

摘要

长时间的骨骼肌不活动(例如肢体固定、卧床休息、机械通气、脊髓损伤等)会导致肌肉萎缩,表现为生活质量下降,在某些特定患者群体中,发病率和死亡率更高。因此,了解导致肌肉在长时间废用期间萎缩的过程是一个重要的研究领域。在这方面,线粒体功能障碍与长时间骨骼肌不活动期间发生的肌肉消耗直接相关。虽然线粒体功能障碍导致废用性肌肉萎缩的概念已经被考虑了近 50 年,但将线粒体信号事件与骨骼肌萎缩联系起来的机制在很大程度上仍未得到解释,直到最近。事实上,新出现的证据表明,线粒体功能障碍和相关的线粒体信号事件是几种失用性骨骼肌萎缩的必要条件。具体来说,失用性诱导的骨骼肌线粒体表型改变和活性氧(ROS)释放增加、钙处理受损以及线粒体特异性蛋白水解激活物的释放,这些都是在长时间肌肉废用期间促进纤维萎缩的常见事件。本综述强调了将线粒体功能障碍和异常线粒体信号与骨骼肌萎缩直接联系起来的证据,并讨论了将这些相互关联的现象联系起来的机制。

相似文献

1
Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects.
Arch Biochem Biophys. 2019 Feb 15;662:49-60. doi: 10.1016/j.abb.2018.11.005. Epub 2018 Nov 16.
2
Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy.
Antioxid Redox Signal. 2020 Sep 10;33(8):559-569. doi: 10.1089/ars.2019.8000. Epub 2020 Feb 24.
3
Mitochondrial signaling contributes to disuse muscle atrophy.
Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E31-9. doi: 10.1152/ajpendo.00609.2011. Epub 2012 Mar 6.
4
Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse.
Int J Mol Sci. 2021 May 13;22(10):5179. doi: 10.3390/ijms22105179.
5
Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant.
J Appl Physiol (1985). 2013 Aug 15;115(4):529-38. doi: 10.1152/japplphysiol.00471.2013. Epub 2013 Jun 13.
6
Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy.
J Appl Physiol (1985). 2011 Nov;111(5):1459-66. doi: 10.1152/japplphysiol.00591.2011. Epub 2011 Aug 4.
7
Oxidative stress and disuse muscle atrophy: cause or consequence?
Curr Opin Clin Nutr Metab Care. 2012 May;15(3):240-5. doi: 10.1097/MCO.0b013e328352b4c2.
8
The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.
J Cell Physiol. 2017 Sep;232(9):2348-2358. doi: 10.1002/jcp.25737. Epub 2017 Apr 12.
9
Can antioxidants protect against disuse muscle atrophy?
Sports Med. 2014 Nov;44 Suppl 2(Suppl 2):S155-65. doi: 10.1007/s40279-014-0255-x.
10
Oxidative stress and disuse muscle atrophy.
J Appl Physiol (1985). 2007 Jun;102(6):2389-97. doi: 10.1152/japplphysiol.01202.2006. Epub 2007 Feb 8.

引用本文的文献

1
Mitochondrial Biogenesis in Skeletal Muscle.
Adv Exp Med Biol. 2025;1478:19-50. doi: 10.1007/978-3-031-88361-3_2.
2
3
The Role of Mitochondria in Mediation of Skeletal Muscle Repair.
Muscles. 2023 Mar 24;2(2):119-163. doi: 10.3390/muscles2020011.
4
A new Drosophila model of prolonged inactivity shortens lifespan and impairs muscle function.
Sci Rep. 2025 Jul 31;15(1):27908. doi: 10.1038/s41598-025-13446-w.
6
Deferoxamine prevents dexamethasone-induced muscle atrophy by reducing MuRF1 and atrogin-1.
Front Pharmacol. 2025 Jul 9;16:1582216. doi: 10.3389/fphar.2025.1582216. eCollection 2025.
7
Angiotensin II Type 1 Receptor Blocker Usage Prevents Oxidative Stress and Muscle Dysfunction in HIV.
Fundam Clin Pharmacol. 2025 Aug;39(4):e70016. doi: 10.1111/fcp.70016.
8
Perspectives on the interpretation of mitochondrial responses during skeletal muscle disuse-induced atrophy.
J Physiol. 2025 Jul;603(13):3679-3699. doi: 10.1113/JP284160. Epub 2025 May 5.
9
Dual Action of var. Extract on Myogenesis and Muscle Atrophy.
Nutrients. 2025 Mar 30;17(7):1217. doi: 10.3390/nu17071217.
10
Exercise Testing for Metabolic Flexibility: Time for Protocol Standardization.
Sports Med Open. 2025 Mar 31;11(1):31. doi: 10.1186/s40798-025-00825-w.

本文引用的文献

1
Mitochondrial dynamics: overview of molecular mechanisms.
Essays Biochem. 2018 Jul 20;62(3):341-360. doi: 10.1042/EBC20170104.
2
Crosstalk between autophagy and oxidative stress regulates proteolysis in the diaphragm during mechanical ventilation.
Free Radic Biol Med. 2018 Feb 1;115:179-190. doi: 10.1016/j.freeradbiomed.2017.11.025. Epub 2017 Nov 29.
3
Role of Cardiolipin in Mitochondrial Signaling Pathways.
Front Cell Dev Biol. 2017 Sep 29;5:90. doi: 10.3389/fcell.2017.00090. eCollection 2017.
7
The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.
J Cell Physiol. 2017 Sep;232(9):2348-2358. doi: 10.1002/jcp.25737. Epub 2017 Apr 12.
9
The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation.
Am J Physiol Cell Physiol. 2016 Sep 1;311(3):C392-403. doi: 10.1152/ajpcell.00125.2016. Epub 2016 Aug 10.
10
Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats.
Physiol Rep. 2016 Aug;4(15). doi: 10.14814/phy2.12885.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验