Buey Rubén M, Schmitz Ruth A, Buchanan Bob B, Balsera Monica
Metabolic Engineering Group. Dpto. Microbiología y Genética. Universidad de Salamanca, 37007 Salamanca, Spain.
Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, 24118 Kiel, Germany.
Antioxidants (Basel). 2018 Nov 17;7(11):166. doi: 10.3390/antiox7110166.
The redox regulation of proteins via reversible dithiol/disulfide exchange reactions involves the thioredoxin system, which is composed of a reductant, a thioredoxin reductase (TR), and thioredoxin (Trx). In the pyridine nucleotide-dependent Trx reduction pathway, reducing equivalents, typically from reduced nicotinamide adenine dinucleotide phosphate (NADPH), are transferred from NADPH-TR (NTR) to Trx and, in turn, to target proteins, thus resulting in the reversible modification of the structural and functional properties of the targets. NTR enzymes contain three functional sites: an NADPH binding pocket, a non-covalently bound flavin cofactor, and a redox-active disulfide in the form of CxxC. With the aim of increasing our knowledge of the thioredoxin system in archaea, we here report the high-resolution crystal structure of NTR from the methane-generating organism strain Gö1 (MmNTR) at 2.6 Å resolution. Based on the crystals presently described, MmNTR assumes an overall fold that is nearly identical to the archetypal fold of authentic NTRs; however, surprisingly, we observed no electron density for flavin adenine dinucleotide (FAD) despite the well-defined and conserved FAD-binding cavity in the folded module. Remarkably, the dimers of the apo-protein within the crystal were different from those observed by small angle X-ray scattering (SAXS) for the holo-protein, suggesting that the binding of the flavin cofactor does not require major protein structural rearrangements. Rather, binding results in the stabilization of essential parts of the structure, such as those involved in dimer stabilization. Altogether, this structure represents the example of an apo-form of an NTR that yields important insight into the effects of the cofactor on protein folding.
通过可逆的二硫醇/二硫化物交换反应对蛋白质进行氧化还原调节涉及硫氧还蛋白系统,该系统由一种还原剂、一种硫氧还蛋白还原酶(TR)和硫氧还蛋白(Trx)组成。在依赖吡啶核苷酸的Trx还原途径中,还原当量通常来自还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH),从NADPH-TR(NTR)转移到Trx,进而转移到靶蛋白,从而导致靶蛋白的结构和功能特性发生可逆修饰。NTR酶含有三个功能位点:一个NADPH结合口袋、一个非共价结合的黄素辅因子以及一个呈CxxC形式的氧化还原活性二硫键。为了增进我们对古细菌中硫氧还蛋白系统的了解,我们在此报告了来自产甲烷生物菌株Gö1(MmNTR)的NTR在2.6 Å分辨率下的高分辨率晶体结构。基于目前所描述的晶体,MmNTR呈现出一种总体折叠结构,与正宗NTR的原型折叠结构几乎相同;然而,令人惊讶的是,尽管在折叠模块中有明确且保守的FAD结合腔,但我们未观察到黄素腺嘌呤二核苷酸(FAD)的电子密度。值得注意的是,晶体中脱辅基蛋白的二聚体与全蛋白通过小角X射线散射(SAXS)观察到的不同,这表明黄素辅因子的结合不需要主要的蛋白质结构重排。相反,结合导致结构关键部分的稳定,例如那些参与二聚体稳定的部分。总之,该结构代表了一种NTR脱辅基形式的实例,它为辅因子对蛋白质折叠的影响提供了重要见解。