Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, 37007 Salamanca, Spain.
Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37008 Salamanca, Spain.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12725-12730. doi: 10.1073/pnas.1713698114. Epub 2017 Nov 13.
Flavoproteins participate in a wide variety of physiologically relevant processes that typically involve redox reactions. Within this protein superfamily, there exists a group that is able to transfer reducing equivalents from FAD to a redox-active disulfide bridge, which further reduces disulfide bridges in target proteins to regulate their structure and function. We have identified a previously undescribed type of flavin enzyme that is exclusive to oxygenic photosynthetic prokaryotes and that is based on the primary sequence that had been assigned as an NADPH-dependent thioredoxin reductase (NTR). However, our experimental data show that the protein does not transfer reducing equivalents from flavins to disulfides as in NTRs but functions in the opposite direction. High-resolution structures of the protein from and sp. PCC6803 obtained by X-ray crystallography showed two juxtaposed FAD molecules per monomer in redox communication with an active disulfide bridge in a variant of the fold adopted by NTRs. We have tentatively named the flavoprotein "DDOR" (diflavin-linked disulfide oxidoreductase) and propose that its activity is linked to a thiol-based transfer of reducing equivalents in bacterial membranes. These findings expand the structural and mechanistic repertoire of flavoenzymes with oxidoreductase activity and pave the way to explore new protein engineering approaches aimed at designing redox-active proteins for diverse biotechnological applications.
黄素蛋白参与广泛的生理相关过程,这些过程通常涉及氧化还原反应。在这个蛋白质超家族中,存在着一类能够将还原当量从 FAD 转移到氧化还原活性的二硫键,从而进一步还原靶蛋白中的二硫键,以调节其结构和功能。我们已经鉴定出一种以前未描述的黄素酶,它只存在于产氧光合作用原核生物中,其基于被指定为 NADPH 依赖型硫氧还蛋白还原酶 (NTR) 的一级序列。然而,我们的实验数据表明,该蛋白不会像 NTR 中那样将还原当量从黄素转移到二硫键,而是起相反的作用。通过 X 射线晶体学获得的来自 和 sp. PCC6803 的蛋白质的高分辨率结构显示,每个单体中有两个毗邻的 FAD 分子,与 NTR 折叠变体中的活性二硫键进行氧化还原通讯。我们暂时将该黄素蛋白命名为“DDOR”(双黄素连接的二硫键氧化还原酶),并提出其活性与细菌膜中基于巯基的还原当量转移有关。这些发现扩展了具有氧化还原酶活性的黄素酶的结构和机制范围,并为探索旨在设计用于各种生物技术应用的氧化还原活性蛋白的新的蛋白质工程方法铺平了道路。