Cazer Casey L, Volkova Victoriya V, Gröhn Yrjö T
Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
BMC Vet Res. 2018 Nov 20;14(1):355. doi: 10.1186/s12917-018-1674-y.
Sensitivity analysis is an essential step in mathematical modeling because it identifies parameters with a strong influence on model output, due to natural variation or uncertainty in the parameter values. Recently behavior pattern sensitivity analysis has been suggested as a method for sensitivity analyses on models with more than one mode of output behavior. The model output is classified by behavior mode and several behavior pattern measures, defined by the researcher, are calculated for each behavior mode. Significant associations between model inputs and outputs are identified by building linear regression models with the model parameters as independent variables and the behavior pattern measures as the dependent variables. We applied the behavior pattern sensitivity analysis to a mathematical model of tetracycline-resistant enteric bacteria in beef cattle administered chlortetracycline orally. The model included 29 parameters related to bacterial population dynamics, chlortetracycline pharmacokinetics and pharmacodynamics. The prevalence of enteric resistance during and after chlortetracycline administration was the model output. Cox proportional hazard models were used when linear regression assumptions were not met.
We have expanded the behavior pattern sensitivity analysis procedure by incorporating model selection techniques to produce parsimonious linear regression models that efficiently prioritize input parameters. We also demonstrate how to address common violations of linear regression model assumptions. Finally, we explore the semi-parametric Cox proportional hazards model as an alternative to linear regression for situations with censored data. In the example mathematical model, the resistant bacteria exhibited three behaviors during the simulation period: (1) increasing, (2) decreasing, and (3) increasing during antimicrobial therapy and decreasing after therapy ceases. The behavior pattern sensitivity analysis identified bacterial population parameters as high importance in determining the trajectory of the resistant bacteria population.
Interventions aimed at the enteric bacterial population ecology, such as diet changes, may be effective at reducing the prevalence of tetracycline-resistant enteric bacteria in beef cattle. Behavior pattern sensitivity analysis is a useful and flexible tool for conducting a sensitivity analysis on models with varied output behavior, enabling prioritization of input parameters via regression model selection techniques. Cox proportional hazard models are an alternative to linear regression when behavior pattern measures are censored or linear regression assumptions cannot be met.
敏感性分析是数学建模中的一个重要步骤,因为它能识别出由于参数值的自然变化或不确定性而对模型输出有强烈影响的参数。最近,行为模式敏感性分析被提议作为一种对具有多种输出行为模式的模型进行敏感性分析的方法。模型输出按行为模式分类,研究人员定义的几个行为模式度量针对每种行为模式进行计算。通过构建以模型参数为自变量、行为模式度量为因变量的线性回归模型,确定模型输入与输出之间的显著关联。我们将行为模式敏感性分析应用于口服金霉素的肉牛中耐四环素肠道细菌的数学模型。该模型包括29个与细菌种群动态、金霉素药代动力学和药效学相关的参数。金霉素给药期间及之后肠道耐药性的流行情况为模型输出。当线性回归假设不满足时,使用Cox比例风险模型。
我们通过纳入模型选择技术扩展了行为模式敏感性分析程序,以生成能有效对输入参数进行优先级排序的简约线性回归模型。我们还展示了如何处理线性回归模型假设的常见违背情况。最后,我们探索了半参数Cox比例风险模型,作为处理删失数据情况时线性回归的替代方法。在示例数学模型中,耐药菌在模拟期表现出三种行为:(1)增加,(2)减少,以及(3)在抗菌治疗期间增加,治疗停止后减少。行为模式敏感性分析确定细菌种群参数在决定耐药菌种群轨迹方面具有高度重要性。
针对肠道细菌种群生态学的干预措施,如饮食改变,可能对降低肉牛中耐四环素肠道细菌的流行率有效。行为模式敏感性分析是一种用于对具有不同输出行为的模型进行敏感性分析的有用且灵活的工具,通过回归模型选择技术能够对输入参数进行优先级排序。当行为模式度量被删失或无法满足线性回归假设时,Cox比例风险模型是线性回归的替代方法。