Suppr超能文献

高分辨率网格化的印度季风区土壤湿度和土壤温度数据集。

High-resolution gridded soil moisture and soil temperature datasets for the Indian monsoon region.

机构信息

School of Earth Ocean and Climate Sciences, Indian Institute of Technology, Bhubaneswar, Odisha - 752050, India.

Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur- 721302, India.

出版信息

Sci Data. 2018 Nov 20;5:180264. doi: 10.1038/sdata.2018.264.

Abstract

High-resolution soil moisture/temperature (SM/ST) are critical components of the growing demand for fine-scale products over the Indian monsoon region (IMR) which has diverse land-surface characteristics. This demand is fueled by findings that improved representation of land-state help improve rainfall/flood prediction. Here we report on the development of a high-resolution (4 km and 3 hourly) SM/ST product for 2001-2014 during Indian monsoon seasons (June-September). First, the quality of atmospheric fields from five reanalysis sources was examined to identify realistic forcing to a land data assimilation system (LDAS). The evaluation of developed SM/ST against observations highlighted the importance of quality forcing fields. There is a significant relation between the forcing error and the errors in the SM/ST. A combination of forcing fields was used to develop 14-years of SM/ST data. This dataset captured inter-annual, intra-seasonal, and diurnal variations under different monsoon conditions. When the mesoscale model was initialized using the SM/ST data, improved simulations of heavy rain events was evident, demonstrating the value of the data over IMR.

摘要

高分辨率土壤湿度/温度(SM/ST)是印度季风区(IMR)对精细化产品日益增长需求的关键组成部分,该地区具有多样的地表特征。这些需求的产生是因为人们发现,改进土地状态的表示有助于提高降雨/洪水的预测能力。在这里,我们报告了 2001-2014 年印度季风季节(6 月至 9 月)期间开发的高分辨率(4km 和 3 小时)SM/ST 产品。首先,检查了五个再分析资料来源的大气场质量,以确定对陆地数据同化系统(LDAS)的实际强迫。对开发的 SM/ST 与观测值的评估强调了高质量强迫场的重要性。强迫误差与 SM/ST 误差之间存在显著关系。利用强迫场组合来开发 14 年的 SM/ST 数据。该数据集捕捉了不同季风条件下的年际、季节内和日变化。当使用 SM/ST 数据初始化中尺度模型时,明显改善了大雨事件的模拟,证明了该数据在 IMR 的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b905/6244185/e725c1924216/sdata2018264-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验