Department of Bioengineering, University of Missouri-Columbia, Columbia, Missouri, United States of America.
Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, United States of America.
PLoS One. 2018 Dec 31;13(12):e0209862. doi: 10.1371/journal.pone.0209862. eCollection 2018.
Cystic fibrosis transmembrane conductance regulator (CFTR), the culprit behind the genetic disease cystic fibrosis (CF), is a phosphorylation-activated, but ATP-gated anion channel. Studies of human CFTR over the past two decades have provided an in-depth understanding of how CFTR works as an ion channel despite its structural resemblance to ABC transporters. Recently-solved cryo-EM structures of unphosphorylated human and zebrafish CFTR (hCFTR and zCFTR), as well as phosphorylated ATP-bound zebrafish and human CFTR offer an unprecedented opportunity to understand CFTR's function at a molecular level. Interestingly, despite millions of years of phylogenetic distance between human and zebrafish, the structures of zCFTR and hCFTR exhibit remarkable similarities. In the current study, we characterized biophysical and pharmacological properties of zCFTR with the patch-clamp technique, and showed surprisingly very different functional properties between these two orthologs. First, while hCFTR has a single-channel conductance of 8.4 pS with a linear I-V curve, zCFTR shows an inwardly-rectified I-V relationship with a single-channel conductance of ~3.5 pS. Second, single-channel gating behaviors of phosphorylated zCFTR are very different from those of hCFTR, featuring a very low open probability Po (0.03 ± 0.02, vs. ~0.50 for hCFTR) with exceedingly long closed events and brief openings. In addition, unlike hCFTR where each open burst is clearly defined with rare short-lived flickery closures, the open bursts of zCFTR are not easily resolved. Third, although abolishing ATP hydrolysis by replacing the catalytic glutamate with glutamine (i.e., E1372Q) drastically prolongs the open bursts defined by the macroscopic relaxation analysis in zCFTR, the Po within a "locked-open" burst of E1372Q-zCFTR is only ~ 0.35 (vs. Po > 0.94 in E1371Q-hCFTR). Collectively, our data not only provide a reasonable explanation for the unexpected closed-state structure of phosphorylated E1372Q-zCFTR with a canonical ATP-bound dimer of the nucleotide binding domains (NBDs), but also implicate significant structural and functional differences between these two evolutionarily distant orthologs.
囊性纤维化跨膜电导调节因子(CFTR)是导致遗传性疾病囊性纤维化(CF)的罪魁祸首,它是一种磷酸化激活但 ATP 门控的阴离子通道。过去二十年来对人类 CFTR 的研究深入了解了 CFTR 作为离子通道的工作原理,尽管它的结构与 ABC 转运蛋白相似。最近解决的未磷酸化的人类和斑马鱼 CFTR(hCFTR 和 zCFTR)以及磷酸化的 ATP 结合的斑马鱼和人类 CFTR 的冷冻电镜结构提供了一个前所未有的机会,以分子水平理解 CFTR 的功能。有趣的是,尽管人类和斑马鱼之间存在数百万年的系统发育距离,但 zCFTR 和 hCFTR 的结构表现出惊人的相似性。在本研究中,我们使用膜片钳技术对 zCFTR 的生物物理和药理学特性进行了表征,并出人意料地发现这两个同源物之间存在非常不同的功能特性。首先,尽管 hCFTR 的单通道电导为 8.4 pS,具有线性 I-V 曲线,但 zCFTR 表现出内向整流的 I-V 关系,单通道电导约为 3.5 pS。其次,磷酸化 zCFTR 的单通道门控行为与 hCFTR 非常不同,其开放概率 Po 非常低(0.03±0.02,而 hCFTR 约为 0.50),伴有极长的关闭事件和短暂的开放。此外,与 hCFTR 不同,每个开放爆发都有明显的定义,很少有短暂的闪烁关闭,zCFTR 的开放爆发不容易分辨。第三,尽管用谷氨酸替换催化谷氨酸(即 E1372Q)消除 ATP 水解会极大地延长 zCFTR 中宏观弛豫分析定义的开放爆发,但 E1372Q-zCFTR 中“锁定开放”爆发内的 Po 仅约为 0.35(而 E1371Q-hCFTR 中的 Po 大于 0.94)。总之,我们的数据不仅为磷酸化的 E1372Q-zCFTR 与核苷酸结合域(NBD)的典型 ATP 结合二聚体的出人意料的关闭状态结构提供了合理的解释,而且还暗示了这两个进化上遥远的同源物之间存在显著的结构和功能差异。