Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, 13699, USA.
James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA.
Nat Commun. 2018 Nov 20;9(1):4897. doi: 10.1038/s41467-018-07376-7.
The photons in circularly polarized light can transfer their quantized spin angular momentum to micro- and nanostructures via absorption and scattering. This normally exerts positive torque on the objects wher the sign (i.e., handedness or angular direction) follows that of the spin angular momentum. Here we show that the sign of the optical torque can be negative in mesoscopic optical matter arrays of metal nanoparticles (NPs) assembled in circularly polarized optical traps. Crossover from positive to negative optical torque, which occurs for arrays with different number, separation and configuration of the constituent particles, is shown to result from many-body interactions as clarified by electrodynamics simulations. Our results establish that both positive and negative optical torque can be readily realized and controlled in optical matter arrays. This property and reconfigurability of the arrays makes possible programmable materials for optomechanical, microrheological and biological applications.
圆偏振光中的光子可以通过吸收和散射将其量子化的自旋角动量传递给微纳结构。通常情况下,当符号(即手性或角方向)与自旋角动量一致时,这个力会对物体施加正向扭矩。在这里,我们展示了在由组装在圆偏振光阱中的金属纳米粒子(NPs)组成的介观光学物质阵列中,光扭矩的符号可以是负的。通过电动力学模拟澄清了,对于具有不同数量、分离和组成粒子配置的阵列,从正到负的光扭矩的转变是由多体相互作用引起的。我们的结果表明,正和负的光扭矩都可以很容易地在光学物质阵列中实现和控制。该特性和阵列的可重构性使得光机械、微流变学和生物学应用的可编程材料成为可能。